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to aquaculture, as waterborne chemicals adversely affect 
the health and productivity of aquatic species (Bojarski and 
Witeska 2020; Naiel et al. 2020; Dar et al. 2022). Glypho-
sate, a widely used herbicide with carcinogenic properties 
(Van Bruggen et al. 2018), induces oxidative stress, inflam-
mation, apoptosis, and immunosuppression in fish (Ma et 
al. 2019; Mohapatra et al. 2020; Yalsuyi et al. 2021). Toxic 

Introduction

Aquaculture and agriculture are interconnected, with aqua-
culture often relying on agricultural drainage water due to 
limited water resources in some regions (Gewaily et al. 2021; 
Rossi et al. 2020). However, the extensive use of herbicides 
and insecticides in agriculture poses significant challenges 
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Abstract
The danger posed by waterborne toxicity from herbicides endangers the aquatic ecosystem. Using dietary medicinal herbs 
is a useful approach to mitigate the effects of herbicide toxicity on aquatic animals. This study attempts to examine the 
consequences and potential mechanisms behind the dietary addition of horseradish tree (Moringa oleifera) leaf extract 
(MOLE) with the help of phytase addition to check the overall growth performance, biochemical changes, histological 
alteration, and gene expression in normal and after glyphosate challenge in Nile tilapia. A total number of 135 Nile tila-
pia fish (7.93 ± 0.03 g) were randomly assigned into three groups each in triplicate. The first group is the control group 
and fed basal diet; the second group supplied with MOLE (200 mg of extract/kg), and the third group was supplied with 
MOLE (200 mg /kg), and phytase (0.2g/ kg) for 8 weeks. After the feeding trial, each experimental group was divided 
into two subgroups to be unchallenged and challenged with glyphosate (30 mg/L of water). The results declared significant 
enhancements (P < 0.05) in Weight Gain Percent (WG%), Specific growth rate (SGR), and Protein efficiency ratio (PER) 
and reducing feed conversion ratio (FCR) with up-regulating hepatic gh, igf1,myogenine, intestinal ghrelin and NPY in fish 
groups fed MOLE and phytase compared with the control group. Moreover, improving the hepatic antioxidant capacity 
while down-regulating hepatic igf1bp, myostatin. Interstingly, MOLE and phytase lightened glyphosate-induced biochemi-
cal alterations, antioxidants, apoptosis, and inflammation-associated genes compared to the glyphosate-challenged group. 
Interestingly, UPLC-ESI-MS/MS analysis recognized 16 compounds encompasing two glucosinolates, three flavonoids, 
one phenolic and three alkaloids in addition to four fatty acids, a terpenoid, one phytate and an aromatic glycoside. These 
components might be accountable for the potential effects exerted by MOLE. Therefore, the current study suggests that 
dietary supplementation to MOLE and phytase can be used as substitute feed supplements in sustainable farming of Nile 
tilapia to defend against glyphosate challenges and enhance growth, antioxidant capacity, exerting anti-inflammatory and 
antiapoptotic effects under normal health conditions or post glyphosate challenge.
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chemicals from pesticides and herbicides damage vital tis-
sues such as gills, skin, and intestines—key barriers in fish 
exposed to contaminated water (Banaee et al. 2020; Yang 
et al. 2020; Saha et al. 2021). Herbicide toxicity disrupts 
reactive oxygen species (ROS) balance, leading to lipid per-
oxidation, oxidative stress, and impairments in metabolic, 
physiological, and immunological functions (Yang et al. 
2020; Sutili et al. 2020).

The production and growing application of glyphosate 
have resulted in its direct introduction into the environment. 
Several studies have indicated that glyphosate exhibits low 
bioaccumulation in the environment, as it is readily broken 
down by microbial activity and becomes inactivated through 
adsorption into the soil (Gandhi et al. 2021). Meanwhile, the 
use of glyphosate in aquatic environments can result in trace 
amounts being detected. However, due to its low vapor pres-
sure (ranging from 1.84 × 10⁻⁷ mm Hg to 6.75 × 10⁻⁸ mm Hg 
at 298 K) and ionic nature, its presence from evaporation 
is minimal. Its occurrence in the air is primarily attributed 
to spray application and meteorological factors, which may 
impact nearby non-target plants as mentioned by Gandhi et 
al. (2021).

Aquaculturists have created cost-effective and highly 
nutritious fish diets that incorporate immunostimulants 
to maintain optimum fish health throughout the grow-out 
phases (Abidin et al. 2021). Additionally, the utilisation of 
plant-based components has gained attention of most fish 
nutritionists due to their affordability and local availability 
(Napier et al. 2020) in the same time it is well-known that 
aquaculture is one of the ideal industries that could benefit 
from the use of products and extracts obtained from differ-
ent sopurces like citrus wastes (Kesbiç et al. 2022).

Currently, there is a focus on incorporating functional 
additives (eco-friendly) in aquatic feed to improve the 
physiological, metabolic, and immunological responses of 
aquatic animals (Elbialy et al. 2020, 2021; Elumalai et al. 
2021). In this context, medicinal herbs have attracted sig-
nificant interest due to their abundant bioactive compounds 
and their high functionality as well (Brum et al. 2018; Car-
doso et al. 2021). The substantial importance of medicinal 
herbs focus on their pharmacological potential as natural 
antioxidative and anti-inflammatory agents indicates their 
potential use in mitigating the effects of insecticides, herbi-
cides, and pesticides on aquatic animals (Mokhbatly et al. 
2020; Sinha et al. 2021; Yousef et al. 2021).

Horseradish tree [Moringa oleifera (MO)] well-known 
for its high nutritional value, offering source of essential 
fibers, vitamins, minerals, proteins, and lipids (Mahfuz 
and Piao 2019). It exhibits various beneficial properties, 
including antidiabetic, anti-inflammatory, anticancer, anti-
oxidant, antibacterial, and antifungal effects (Kamble et al. 
2015; Coz-Bolaños et al. 2018; Ma et al. 2020; Mwamatope 

et al. 2020). The leaves of Moringa are rich in beneficial 
phytochemicals, such as tannins, terpenoids, alkaloids, iso-
thiocyanates, sterols, flavonoids, saponins, glucosinolates, 
anthraquinones, and glycosides (González-Romero et al. 
2022).

Moringa leaf extract (MOL) was utilized in numerous 
researches to stimulate growth, enhance immune response, 
boost antioxidant activity, and protect against diseases in 
Nile tilapia in fry as well as different life stages (Elabd et 
al. 2019; Abd-El-Gawad et al. 2020; Chen et al. 2020), fin-
gerlings (El-Kassas et al. 2020a, b; Emam et al. 2024), and 
adult fish (Hamed and El-Sayed 2019; El-Son et al. 2022). 
Additionally, some previous researches have shown the 
potential of Moringa leaves to reduce stress indices (Elabd 
et al. 2019; Hamed and El-Sayed 2019), as well as mitigate 
the sub-lethal toxicity of fipronil (Mahmoud et al. 2022) and 
sub-chronic sodium fluoride (Ahmed et al. 2020) in Nile 
tilapia.

Phytate is one of the anti-nutritional compounds pres-
ent in Moringa leaves that is not possible to be removed by 
soaking or heating. High levels of phytic acid in different 
sources of plant protein negatively affect growth, nutrient 
retention, and mineral absorption (Gatlin et al. 2007). Stud-
ies have revealed that approximately 60–80% of phospho-
rus in plant by-products is in the form of phytate as chelated 
compound (Lei et al. 2013). Phosphorus in this form cannot 
be metabolized by mono-gastric and agastric fish, leading to 
nutrient runoff that contributes to aquatic pollution.

The addition of dietary phytase to feed is an effective 
technique to improve feed conversion ratio (FCR), enhance 
mineral absorption, promote thorough digestion, and 
increase phosphorus retention in the body, thereby reducing 
pollution in aquatic environments (Hussain et al. 2011; Liu 
et al. 2013; Hussain et al. 2015b).

In aquaculture, Nile Tilapia (Oreochromis niloticus) is 
emerging as a promising species for aquaculture, thanks to 
progressions in different techniques of hybridization and 
genetic engineering that enable its cultivation in various 
environments including fresh, brackish, and marine envi-
ronments (Yue et al. 2016). The largest production of tilapia 
is recorded in China, followed by Indonesia, Egypt, Brazil, 
and Thailand (FAO 2022). As of 2020, Nile tilapia holds the 
third position among the major aquaculture species, with a 
production of 4.4 million tonnes (FAO 2022).

Despite studies on the effects of M. oleifera leaf extract 
(MOLE) on fish health status and growth performance 
(Abidin et al. 2022; Abdel-Latif et al. 2022; El-Kassas et 
al. 2022), there is limited knowledge on MOLE's ability to 
mitigate the toxicological effects of glyphosate on Nile tila-
pia (O. niloticus). The current research aims to explore the 
efficacy of MOLE and phytase on Nile tilapia growth per-
formance and explore their impacts on glyphosate-induced 
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oxidative stress, inflammation, apoptosis, and kidney and 
liver dysfunction.

Material and methods

Ethical statements

All experimental procedure were conducted in accordance 
with the Egyptian codes of ethics and was approved by 
the Committee of Animal Ethics at the Faculty of Aquatic 
and Fisheries Sciences, Kafrelsheikh University, Egypt 
(approval number: IAACUC-KSU-3–2022).

Preparation of Moringa oleifera leaf extract

The leaves of M. oleifera were harvested from a private gar-
den (April, 2021) and were authenticated by an expert in 
Botany. A voucher sample was kept (ID: Ziz300). To iden-
tify the plant more accurately, chemical characterization of 
the secondary metabolites was investigated using UPLC-
ESI-MS/MS analysis.

The leaves were dried in the shade and were ground to 
a fine powder. The powdered plant (1 kg), was extracted 
by aqueous methanol (90%) for 3 days at room tempera-
ture with frequent shaking. The extract was then filtered to 
remove the powder. The extract was distilled off using a 
rotary evaporator to yield a brownish-green residue (yield 
2%).

UPLC-ESI–MS/MS

Ultra-performance liquid chromatography with electrospray 
ionization quadrupole-linear ion trap-tandem mass spec-
trometry analysis were implemented following a published 
procedure (Assar et al. 2023). It was performed on ESI-MS 
positive and negative ion acquisition mode using a XEVO 
TQD triple quadruple instrument. A multiple-reaction mon-
itoring (MRM) mode was used for the quantitative deter-
mination of different phytochemicals. The crude extract 
of Moringa leaves was analyzed by UPLC. The collected 
samples were dissolved in methanol (HPLC-grade), filtered 
using a 0.2 μm-diameter membrane disc filter, the obtained 
solution concentration was in the range of 0.3mg/mL.

Waters mass spectrometer (Waters Corporation, Milford, 
USA) was used in the current study. The reverse-phase C18 
column utilized was ACQUITY UPLC BEH (1.7 μm parti-
cle size, 1.7 μm–2.1 × 50 mm; 50 mm × 1.2 mm inner diam-
eter) and 0.2 m/mL flow rate. A gradient elution program of 
solvent A (acidified water with 0.1% formic acid); solvent 
B (acidified methanol with 0.1% formic acid), was applied 
for the analysis. The elution conditions applied were: 0–2 

min, isocratic elution (90% A); 2–5 min, linear gradient 
(90 to 70% A); 5–15 min, linear gradient (70% to 30% A); 
15–22 min, linear gradient (30% to 10% A); and 22–25 min, 
isocratic elution (10% A); finally, column was washed and 
reconditioned. Electrospray ionization (ESI) was applied in 
both positive and negative ion modes. The parameters used 
for analysis were: source temperature of 150°C; cone volt-
age of 30eV; capillary voltage of 3 kV; desolvation tempera-
ture of 440°C; cone gas flow of 50 L/h; and desolvation gas 
flow of 900 L/hr.

Chemical components were identified using their ESI–
MS2 spectra and fragmentation profiles. The raw data were 
analyzed by software MassLynx 4.1 and characterized by 
comparing both mass spectra and retention time (Rt) with 
the published data.

Experimental design

A total number of 135 healthy mono-sex males of Nile tila-
pia fish (Oreochromis niloticus) 7.93 ± 0.026g (initial mean 
weight ± standard deviation) was reared in a private local 
fish farm at Kafrelsheikh governorate, Egypt. Collected 
fish were transported in oxygenated polyethylene bags to 
the biotechnology lab, Department of Fish Processing and 
Biotechnology, Kafrelsheikh University, Egypt and accli-
mated for a period of two weeks and fed normal fish diet 
by percentage of 5% of the body weight (Table  1) twice 
daily (09:00 AM and 2:00 PM) for two months. Aerators 
(stones) were added to make water saturation with oxygen 
and mechanical filters were used.

Water quality parameters were monitored throughout 
the study period using calibrated portable instruments. The 
parameters of water quality including pH, temperature, 
and dissolved oxygen were monitored daily and recorded 
as 26.23 ± 3°C, 5.8 ± 0.7 mg/L, and 7.60 ± 0.2, respectively 
while total ammonia was checked once per week. Dissolved 
oxygen (DO) was measured using a HI-9146-04 HANNA® 
galvanic DO meter (Hanna Instruments Ltd, Leighton Buz-
zard, UK), which employs an electrochemical method with 
automatic temperature compensation. Total ammonia nitro-
gen (TAN) was quantified using a HI-97715 photometer® 
(Hanna Instruments Ltd, Leighton Buzzard, UK), which uti-
lizes the standardized Nessler method. pH and temperature 
were measured using an MW105 portable meter® (Milwau-
kee Instruments, Hungary), which employs the glass-elec-
trode potentiometric method for pH determination.

Fish were divided into three groups equally distributed in 
9 rectangular transparent glass tanks (70*60*40 cm), 15 fish 
per tank triplicates for each of the three groups. The dura-
tion of the feeding trial was 8 weeks.
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Glyphosate herbicide challenge

The challenge was performed after the end of the feeding 
trial (8 weeks), each group of the three experimental groups 
was divided into non-challenged and challenged groups 
and named as follows: control group (Control group non-
challenged); control positive group (control challenged 
group); MOLE (Moringa oleifera leaf methanolic extract 
non-challenged); MOLE challenged (Moringa oleifera leaf 
methanolic extract challenged with glyphosate herbicide); 
MOLE + phy (Moringa oleifera leaf methanolic extract 
with phytase enzyme non-challenged); MOLE + phy chal-
lenged (Moringa oleifera leaf methanolic extract with phy-
tase enzyme challenged with glyphosate herbicide). The 
challenge was performed by using commercial formula-
tion Roundup® glyphosate herbicide (30 mg/l of water) by 
injection of herbicide in water for three days, when water 
was exchanged the herbicide was added to water again for 
each treatment and after three days all samples were col-
lected from all treatments challenged and non-challenged to 
perform different analysis, and the exact dose of glyphosate 
(Roundup 48%, Agrochem, Alwatneia Co., Alex., Egypt) 
used in our study was kept at the necessary concentration of 
0.6 mg/L in each aquarium. Concurrently, the control group's 
water was refreshed with dechlorinated tap water continu-
ously. The lethal dose (LC50; 12 mg/L) of glyphosate was 
previously determined by Abdelmagid et al. (2021), where 
fish were exposed to 1/20 of the LC50 (0.6 mg/L) as per 
Abdelmagid et al. (2021).

Growth parameters

Counting the weight of fish at the onset of the experiment to 
record the initial weight and every two weeks till the termi-
nation of the experiment to record fish final weight to deter-
mine the growth parameters: Weight gain, percent weight 
gain, total feed intake, specific growth rate, feed conversion 
ratio, survival rate, and protein efficiency ratio according to 
Assar et al. (2023).

The growth parameters were determined as follows:

Body weight gain (BWG, g) = FBW–IBW
Specific growth rate (SGR) (% body weight gain / day) = ((Ln 

FW − Ln IW) /t) × 100
Feed conversion rate (FCR) = Feed intake (g) / Weight gain 

(g)
Protein efficiency ratio (PER) = Live weight gain (g)/ Dry 

protein intake (g)

At the completion of the experimental period (8 weeks), 9 
fish/group were randomly selected, the growth performance, 
efficiency feed utilization, biochemical, pathological, and 

The formulated diet

The basal diet was prepared according to NRC, formulated 
of 31.8% CP, all ingredients were ground into fine powder 
to compose three groups of experimental diet (control group 
with normal fish diet, MOLE group at 200mg of extract/
kg of dry feed and MOLE (methanolic extract) at 200mg 
of extract/kg of dry feed with Phytase enzyme at 0.2g/ kg) 
(Table 1).

To form pellets, a machine of meat grinder was used to 
form pellets (2.33mm), and then the pellets were left to dry 
in the shade. The final diet was preserved in the refrigerator 
to avoid rancidity.

Table 1  Ingredients and proximate composition (g/kg, as-fed) of the 
control group, Moringa oleifera leaf extract and Moringa oleifera leaf 
extract with phytase enzyme
Ingredients (g/kg) Basal Moringa 

extract
Mor-
inga + Phy-
tase

 Fish meal (65%) 10 10 10
 Soybean meal (45%) 40.8 40.8 40.8
 Corn gluten meal 6 6 6
 Yellow corn 19.5 19.5 19.5
 Wheat flour 18.5 18.5 18.5
 Soybean oil 3 3 3
 Vitamin mixture* 0.8 0.8 0.8
 Mineral mixture** 0.5 0.5 0.5
 DiCaP 0.6 0.6 0.6
 Choline chloride 0.2 0.2 0.2
 Stay C*** 0.1 0.1 0.1
 Moringa extract 0 0.2 0.2
 Phytase enzyme 0 0 0.2
Composition (%)
 Crude protein 31.85 31.67 31.80
 DE (Kcal/Kg) 3005.16 3004.84 3004.52
 Crude lipid 5.44 5.56 5.72
 Ash 4.923 4.925 4.927
 Crude fiber 3.827 3.830 3.832
 Ca 0.784 0.784 0.784
 P 0.810 0.810 0.810
*Vitamin (g/kg premix): Thiamin HCl, 0.44; Riboflavin, 0.63; Pyri-
doxine HCl, 0.91; DL pantothenic acid, 1.72; Nicotinic acid, 4.58; 
Biotin, 0.21; Folic acid, 0.55; Inositol, 21.05; Menadione sodium 
bisulfite, 0.89; Vitamin A acetate, 0.68; Vitamin D3, 0.12; dL-alpha-
tocoperol acetate, 12.63; Alpha-cellulose, 955.59
**Trace mineral (g/100 g premix): Cobalt chloride, 0.004; Cupric sul-
fate pentahydrate, 0.25; Furrous sulfate, 4.000; Magnesium sulfate 
anhydrous, 13.862; Manganous sulfate monohydrate, 0.650; Potas-
sium iodide, 0.067; Sodium selenite, 0.010; Zinc sulfate hepahydrate, 
13.193; Alpha-cellulose, 67.964
***Stay C, (L-ascorbyl-2-polyphosphate 35%)
aMoringa leaf extract 0.2 g/kg (200mg/kg)
bPhytase enzyme 0.2 g/kg (200mg/kg)
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glass slides, and were stained with hematoxylin and eosin 
(H&E) for further investigation using light microscope 
(Bancroft and Gamble 2008).

Molecular analysis

Tissue samples were collected from each experimental 
group (9/group) were obtained to perform molecular analy-
sis to study gene expression in the liver and intestine; tissue 
samples were collected in separate sterile Eppendorf tubes 
then instantly shocked in liquid nitrogen to perform RNA 
extraction.

Fifty mg liver and intestine samples in triplicates were 
used for total RNA extraction and was performed by using 
GENEzol™ Reagent (Geneaid,UK) according to manufac-
turer’s instructions. BioDrop spectrophotometer (Biochrom 
Ltd, UK.) was used to assess concentration and purity of 
RNA and the integrity of the extracted RNA was analyzed 
by using agarose gel electrphoresis. Fixed amount of RNA 
samples 5 μg were reverse transcriped by using cDNA mas-
ter mix to get cDNA samples was performed by using TOP-
script™ RT DryMIX kit (enzynomics, Korea).

Real-time PCR assay was accomplished by using TOP-
real™ SYBR Green qPCR PreMIX (enzynomics, korea) 
for specific genes of growth, antioxidant, inflammatory 
and apoptosis as Growth hormone gene (GH), Insulin like 
growth factor (IGF), Insulin like growth factor binding 
protein (IGFBP), Myostatin (MYos), Myogenin (MYoG), 
Superoxide dismutase (SOD), Cyclooxygenase2 (COX2), 
Caspase3 (Cas3), Neuropeptide Y (NPYa) and Ghrelin 
(Ghr), by using gene specific primer sequences in liver and 
intestine for these genes (Table 2). 10µL of master mix (0.6 
µL of forward primer, 0.6 µL of reverse primer, 1 µL cDNA 
template, and 7.8 nuclease-free water) and 10 µL of SYPER 
to make final volume 20 µL. Steps were performed by using 
Rotor Gene-Q (QIAGEN, Germany) cycler with the follow-
ing: Activation step for 15 min at 95°C, Denaturation for 
10 s at 95°C, annealing for 15 s at a specific temperature 
depending on type of primer, and the extension step at 25 
s for 72°C.

The resulting curves were analyzed to assess the effi-
ciency of amplification at melting temperature by showing 
one peak for all genes. Relative expression for all sam-
ples was evaluated by the method of 2–ΔΔCT (Livak and 
Schmittgen 2001). The last step was normalization of fold 
change for all genes against the housekeeping genes (EF1A 
and GAPDH genes).

Statistical analysis

All data were expressed as mean ± standard error of mean 
(M ± SEM). Preliminary, data normality was assessed using 

molecular analysis were calculated, followed by glyphosate 
challenge which was conducted for an additional 3 days.

Blood sampling,and tissue collection

After eight weeks, 9 fish/experimental group (from both 
glyphosate-challenged and nonchallenged subgroups) were 
randomly selected and anesthetized by 150 mg/L MS222 
(Argent Laboratories, Redmond, Washington). Using a dis-
posable plastic syringe, blood samples were collected by 
caudal puncture in a plain Eppendorf tube without antico-
agulant, after coagulation samples were centrifuged at 3000 
rpm/15 min at 4 ◦C, divided into multiple aliquots, and 
stored at − 20◦C for serum biochemical parameters assess-
ment. Biochemical measurements were performed using 
a spectrophotometer and commercial kits (BioDiagnostic, 
Cairo, Egypt). Immediately after blood collection from each 
fish tissue samples from the gills, liver, and intestine were 
rapidly excised, and collected from each fish were kept 
in 10% neutral buffered formalin for further histological 
examination or shocked in liquid nitrogen and then stored 
at −80°C for further RNA extraction and gene expression 
measuring.

Serum biochemical analysis

Serum samples were analyzed for liver injury biomarkers as 
ALT (alanine transaminase) and AST (aspartate aminotrans-
ferase) (Reitman and Frankel 1957), TC (total cholesterol|) 
(Allain et al. 1974), TG (triglycerides) (Fredrickson et al. 
1967), total protein, albumin (Lowry et al. 1951; Doumas 
et al. 1971) respectively, BUN (blood urea nitrogen) (Patton 
and Crouch 1977) and creatinine (Henry 1974) were also 
measured. VLDL-C (Very-low-density lipoprotein) concen-
tration was determined using the standard equation (Fried-
wald et al. 1972). Serum globulin concentrations (Glob) 
were estimated by subtracting the albumin concentration 
from the total protein amount, considering the albumin to 
globulin ratio (A/G) as described by Kaneko (1989).

Histopathological examination

Fish samples were collected from each experimental group 
(9/group) for histopathological analysis and the target organs 
were gills, liver, and intestine. The target organs were kept 
in 10% neutral buffered formalin at room temperature for 
further analysis (Thermo Fisher, Kalamazoo, MI) for 48 h. 
On after one day day, the organs were washed several times 
with water and dehydrated in 75% ethyl alcohol. Gills, liver 
and intestine samples were dissected and observed along 
with standard histological techniques. Longitudinal sections 
of 5 μm increments were prepared from all tissues, fixed on 
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MS fragmentation ions which are in accordance to the 
published data as follows. Of these compounds, two glu-
cosinolates were identified namely glucomoringin and 
4-(2’-O-acetoxy-α-L-rhamnopyranosyloxy) benzyl glu-
cosinolate. Both compounds were identified previously in 
the leaves of M. oleifera and M. stenopetala (Maldini et al. 
2014; Lin et al. 2019; Sibhat et al. 2023; Bennett et al. 2003, 
EFSA 2019). Chlorogenic acid, quercitin, isoquercitin and 
Kaempferol-3-O-rhamnoside were recognized in our study. 
These polyphenolic compounds were previously detected 
in the leaves of both M. oleifera (Lin et al. 2019, Zhu et 
al. 2020; Coppin et al. 2013; Bennett et al. 2003, Kumar et 
al. 2021). Of these polyphenolic compounds, only chloro-
genic acid was detected in both species M. oleifera and M. 
stenopetala (Bennett et al. 2003; Sibhat et al. 2023), while 
the flavonoids quercitrin, isoquercitrin and kaempferol-3-O-
rhamnoside was only identified from the leaves of M. ole-
ifera. Alkaloids marumoside B, tangutoride E, and niazirin 
were characterized in this research. These compounds were 
detected previously in the extract of the leaves of M. oleif-
era only (Lin et al. 2019; Sahakitpichan et al. 2011, EFSA 

Shapiro–Wilk’s test, while variance homogeneity was tested 
by Levene’s test, both performed with significance level at 
p ≤ 0.05. Percentage data were subjected to Arcsine trans-
formation for the analysis of variances. To investigate the 
differential effects of MOLE, MOLE with phytase enzyme 
growth performances was analyzed by one-way ANOVA, 
biochemical analyses, histomorphometric measurements, 
and relative gene expression were analyzed using Two-
way ANOVA, pursued by Tukey’s multiple comparison 
test (p ≤ 0.05). All statistical analyses were performed using 
GraphPad Prism (version 9.5, GraphPad Software, San 
Diego, USA).

Results

Phytochemical characterization of Moringa olifera

The UPLC-ESI-MS/MS examination in both positive and 
negative ion modes (Fig. 1) was utilized to help identify-
ing the Moringa species in our study. This analysis identi-
fied 16 compounds (Table 3) based on their m/z and MS/

Gene Primer sequence (5'−3') Accession number Reference
Internal reference genes
1 ef1a For: ​G​C​A​C​G​C​T​C​T​G​C​T​G​G​C​C​T​T​T

Rev: ​A​G​C​C​A​G​A​C​G​G​A​C​A​G​A​T​G​C​C
AB075952 Yang et al. 

(2013)
2 gapdh For: ​G​A​T​A​A​T​G​G​C​A​A​A​C​T​T​G​T​C​G​T​C​G

Rev: ​A​C​A​T​T​G​G​A​G​C​A​T​C​G​G​G​T​G​A​G
JN381952 Yang et al. 

(2013)
Growth related genes
3 gh For: ​G​T​T​G​T​G​T​G​T​T​T​G​G​G​C​G​T​C​T​C

Rev: ​C​A​G​G​T​G​C​G​T​G​A​C​T​C​T​G​T​T​G​A
HM565014.1 Abo-Raya 

et al. (2021)
4 igf-1 For: ​T​C​C​T​G​T​A​G​C​C​A​C​A​C​C​C​T​C​T​C

Rev: ​A​C​A​G​C​T​T​T​G​G​A​A​G​C​A​G​C​A​C​T
NM_001279503.1 Costa et al. 

(2016)
5 igfbp1a For: ​T​C​C​T​A​G​A​C​C​T​G​G​T​G​A​A​G​C​C​A

Rev: ​C​G​A​G​G​T​C​G​A​C​A​G​T​G​C AGATT
XM_003438121.3 Assar et al. 

(2024)
6 myost For: ​G​C​A​T​C​T​G​T​C​T​C​A​G​A​T​C​G​T​G​C​T

Rev: ​T​G​C​C​A​T​C​A​T​T​A​C​A​A​T​T​G​T​C​T​C​C​G
KT987208.1 Elkatatny et 

al. (2016)
7 myog For: ​G​C​A​G​C​C​A​C​A​C​T​G​A​G​G​G​A​G​A​A

Rev: ​A​A​G​C​A​T​C​G​A​A​G​G​C​C​T​C​G​T​T
GU246717.1 Nebo et al. 

(2013)
Anti-oxidant related gene
8 sod For: ​C​A​T​G​C​C​T​T​C​G​G​A​G​A​C​A​A​C​A​C

Rev: ​A​C​C​T​T​C​T​C​G​T​G​G​A​T​C​A​C​C​A​T
AY491056.1 Han et al. 

(2016)
Inflammatory related gene
9 cox2 For: ​A​G​C​A​G​C​C​A​G​A​A​G​G​A​A​G​G​C​G​G Rev:​G​A​C​

T​G​A​G​T​T​G​C​A​G​T​T​C​T​C​T​T​A​G​T​G​T​G​C
- Chuang and 

Pan (2011)
Apoptosis related gene
10 cas3 For: ​G​G​C​T​C​T​T​C​G​T​C​T​G​C​T​T​C​T​G​T

Rev: ​G​G​G​A​A​A​T​C​G​A​G​G​C​G​G​T​A​T​C​T
GQ421464.1 Standen et 

al. (2016)
Control of feeding related gene
11 npya For: ​A​C​A​A​G​A​C​A​G​A​G​G​T​A​T​G​G​G​A​A​G​A

Rev: ​G​G​C​A​G​C​A​T​C​A​C​C​A​C​A​T​T​G
XM_003448854.1 Yan et al. 

(2017)
Appetite stimulant related gene
12 ghr For: ​G​C​A​G​A​A​G​A​C​T​T​G​G​C​G​G​A​C​T​A​C​A​T

Rev: ​A​T​A​A​A​C​C​A​G​A​A​A​G​A​A​G​G​G​A​C​A​A​C​C
AB104859.1 Dong et al. 

(2016)

Table 2  Primers’ sequences used 
for Q-rtPCR

EF1a Elongation factor 1 alpha 
(internal reference gene), 
GAPDH Glyceraldehyde-3-phos-
phate dehydrogenase (internal 
reference gene), GH Growth hor-
mone, IGF1 Insulin-like growth 
factor, IGFBP1a Insulin-like 
growth factor binding protein 1a, 
MYoS Myostatin, MYoG Myo-
genin, SOD Super oxide dis-
mutase, COX-2 Cyclooxygenase 
2, Cas3 Caspase3, NPYa Neuro-
peptide Y, Ghr Ghrelin
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significantly increased the concentration of total protein and 
globulin paralleled to the control groups, both before and 
after the challenge with glyphosate.

Regarding the serum lipid profile as shown in Table 5, 
TC, TG, and VLDL-c levels showed significant reduction 
in the fish group fed MOLE either alone or with phytase 
compared to the control groups either with or without chal-
lenge, while they were markedly elevated in the glyphosate 
challenged group matched to the control group.

Concerning serum kidney injury biomarkers, BUN and 
creatinine concentrations showed significant reduction in 
the fish group fed the MOLE and phytase compared to the 
control groups either with or without glyphosate challenge, 
while they were significantly elevated in the glyphosate 
challenged group compared to the control group.

Furthermore, serum enzyme activity (ALT and AST) 
were analogous in MOLE, MOLE and phytase in relation to 
the control group. While, after the glyphosate challenge, the 
fish fed the MOLE and phytase exhibited lower activities 
paralleled to the control challenged group (p < 0.05).

2019, Kumar et al. 2021). Consequently, the genus of Mor-
inga in our study is M. oleifera.

Growth performance

Concerning parameters for growth performance of Nile 
tilapia fed diets supplementd with MOLE and phytase are 
shown in Table 4. Fish growth traits ( FBW, WG%, SGR) 
were highest (p < 0.05) in the fish group fed the diet sup-
plied with both MOLE and phytase compared to the control 
group. Regarding Feed utilization, the MOLE and phytase 
group showed a considerably (p < 0.05) lower FCR and 
higher PER matched to the control. Conversely, growth was 
markedly lowered (p < 0.05) in the fish group fed MOLE 
alone compared to the control. The survival rate and feed 
intake at the experiment did not show significant differences 
(p > 0.05) amongst the experimental diets.

Biochemical findings

The effects of the dietary MOLE and phytase on the serum 
biochemical parameters of the Nile tilapia are demonstrated 
in Table 5. The addition of MOLE and phytase in the diet 

Fig. 1  UPLC-ESI-MS base peak ion chromatograms of MOLE (negative ion mode: top, positive ion mode: bottom)

 

1 3

Page 7 of 23  135



Veterinary Research Communications (2025) 49:135

Histological findings

Histopathological changes in the gills, liver, and intestine 
for different groups are shown in Figs. 2, 3 and 4. Control 
gills showed normal histological appearance. Each gill 
shows numerous gill filaments. Each filament is lined with 
epidermal epithelium, and each lamella consisting of pillar 
cells surrounding blood capillaries (Fig. 2A). The glypho-
sate Challenged group revealed diffuse lamellar fusion 
with lamellar congestion and hemorrhage (Fig. 2B and C). 
MOLE (Group 2) showed normal histological appearance 
(Fig.  2D). MOLE challenged (Group 2x) showed focal 
lamellar thickening with interlamellar congestion (Fig. 2E). 
MOLE and phytase (Group 3) showed lamellar congestion 
with focal lamellar fusion (Fig.  2F). MOLE and phytase-
challenged (group 3x) showed moderate to severe lamel-
lar thickening with lamellar fusion beside lamellar lifting 
(Fig. 2G).

Histopathological changes in the liver samples, control 
liver showed normal histological appearance of hepatic 
parenchyma and hepato-pancreas including normal central 
vein, hepatic cords, blood sinusoids, and presence of lipid 
droplets within the cytoplasm of hepatocytes (Fig. 3A). The 
glyphosate challenged group showed diffusely swollen hepa-
tocytes with multifocal coalescing hepatocyte necrosis and 
inflammatory aggregates (Fig.  3B). Higher magnification 
shows necrotic hepatocytes surrounded with inflammatory 

Table 3  Phytochemical profiling of M. oleifera leaves by LC–ESI–MS/MS in negative and positive ion modes
NO Rt 

min
[M-H]−

m/z
[M + H]+

m/z
MS2 Ions
m/z

Identification class

1 0.75 261 179 Inositol monophosphare Phytate
2 1.00 570 97 Glucomoringin Glucosinolate
3 1.12 504 

[M + HCOO]−
427, 307, 279, 150 Marumoside B Alkaloid

4 1.35 353 253, 190, 144, 125 Chlorogenic acid Phenolic
5 2.38 612 259 4-(2’-O-Acetoxy-α-L-rhamnopyranosyloxy)benzyl 

glucosinolate
Glucosinolate

6 4.96 324 188, 147, 114, 88 Niazirin Alkaloid
7 5.93 303 285, 212, 176, Tangutoride E Alkaloid
8 5.93 463 318, 300, 271, 178, 

159
Isoquercetin Flavonoid

9 6.36 447 449 300, 271 Quircitrin Flavonoid
10 6.46 447 

[M + HCOO]−
267, 163, 115 Kaempferol-3-O-rhamnoside Flavonoid

11 9.41 329 293, 226, 212, 168, 
137

Sanleng acid Fatty acid

12 13.81 265 247, 211, 180, 169, 133 4-α,6-α-Dihydroxyeud-esman-8β−12-olide Terpenoid
13 14.30 293 275, 247, 232, 152 (E,E)−9-Oxooctadeca-10,12-dienoic acid Fatty acid
14 18.10 425 296, 253, 146, 73 Benzyl-O-β-D-xylopyranosyl-(1--−6)-β-D-glucopyranoside Aromatic 

glycoside
15 19.05 277 

[M + Na]+
237, 97, 88, 69 Palmitoleic acid Fatty acid

16 22.35 284 Octadecanamide Fatty acid 
derivative

Table 4  Growth and feed utilization parameters of Nile tilapia (Oreo-
chromis niloticus) fed on normal fish diet, Moringa oleifera metha-
nolic extract and Moringa oleifera methanolic extract with phytase 
enzyme for 8 weeks
Parameters Control Moringa Moringa + phy-

tase
P 
Value

IBW (g) 7.91 ± 0.01 7.91 ± 0.02 7.96 ± 0.01 0.7290
FBW (g) 24.42 ± 0.1b 20.33 ± 0.1c 27.04 ± 0.16a 0.0002
BWG % 208.73 

±6.76b
156.97 
±3.96c

240.0 ± 8.31a 0.0003

Total feed 
intake (g)

375.76 ± 
2.11

375.76 ± 
2.16

377.87 ±2.14 0.7290

SGR (% 
day-1)

1.86 ± 0.33b 1.56 ± 0.33c 2.06 ± 0.33a 0.0001

FCR 1.82 ± 
0.02ab

2.4 ± 0.23a 1.57 ± 0.09b 0.0175

PER 1.76 ± 
0.03ab

1.3 ± 0.13b 2.03 ± 0.12a 0.0094

Survival 
(%)

88.9 ±2.2 91.13 ±4.43 88.9 ±2.2 0.9328

Growth and feed utilization parameters of Nile tilapia (Oreochromis 
niloticus) fed on normal fish diet, Moringa oleifera methanolic extract 
and Moringa oleifera methanolic extract with phytase enzyme for 
8 weeks
IBW Initial body weight, FBW final body weight, BWG body weight 
gain, SGR specific growth rate, FCR Feed conversion ratio, PER pro-
tein efficiency rate. Data are expressed as Mean ± SEM where n = 3 
as triplicate tanks for BWG%, FCR, SGR, PER and n = 45 for IBW 
and FBW. Values with different superscripts within a row are signifi-
cantly different (p < 0.05)
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invaded inflammatory cells (Fig. 4G). MOLE and phytase 
challenged (Group 3x) showed few vacuolation and apop-
totic bodies besides minimal submucosal edema (Fig. 4H).

Differential gene expression analysis

The effect of dietary MOLE and phytase on the tran-
scriptional levels of growth-related (gh,igf1,igf-bp, myst, 
myogenin,gherlin and NPY), antioxidant-related (sod), 
and inflammatory-related genes (cox2) and apoptotic gene 
(caspase-3) of normal Nile tilapia and three days after the 
glyphosate challenges are shown in Figs. 5 and 6. Generally, 
all studied genes showed a significant difference among the 
experimental groups.

Growth performance-related gene expression

Concerning the expression levels of liver growth-related 
genes including (gh,igf1, myogenin, myst and igf-bp) and 
intestinal gherlin and NPY; dietary supplementation of 
MOLE and phytase enhanced the transcriptional levels of 
liver gh (Fig. 5A), igf1 (Fig. 5B) and myogenin (Fig. 5C), 

aggregates beside diffuse hepatic vacuolation and sinusoidal 
congestion (Fig. 3C). The glyphosate challenged group also 
exhibited diffuse extensive hepatic vacuolation and minimal 
sinusoidal congestion (Fig. 3D). MOLE (Group 2) showed 
moderate hepatic vacuolation with sinusoidal congestion 
(Fig.  3E). MOLE challenged (Group 2x) showed diffuse 
hepatic vacuolation (Fig. 3F). MOLE and phytase (Group 
3) showing moderate hepatic vacuolation (Fig. 3G). MOLE 
and phytase challenged (Group 3x) showed diffuse severe 
hepatic vacuolation (Fig. 3H).

The intestine of the control group of Nile tilapia fed the 
basal diet exhibited the normal histological appearance of 
intestinal villi (Fig. 4A). The glyphosate challenged group 
showed extensive apical desquamation with mild lamina 
propria inflammatory aggregates (Fig.  4B and C). The 
glyphosate challenged group showed diffuse shortened, 
stunted fused villi with marked lamina propria with cel-
lular infiltrate and submucosal edema (Fig.  4D). MOLE 
(Group 2) showing normal histological appearance with 
increased villi length (Fig. 4E). MOLE challenged (Group 
2x) showing mild intestinal vacuolation (Fig. 4F). MOLE 
and phytase (Group 3) show intestinal vacuolation with few 

Table 5  Biochemical parameters of Nile tilapia (Oreochromis niloticus) reared for 8 weeks and fed on normal fish diet, Moringa oleifera metha-
nolic extract and Moringa oleifera methanolic extract with phytase enzyme
Parameters Control MOLE MOLE + phy-

tase Enzyme
Control 
challenged

MOLE 
challenged

MOLE + phy-
tase 
challenged

p value of two-way ANOVA
challenge treatment Interaction

Total protein 
(g/dL)

4.25±0.019c 4.62±0.02b 5.45±0.06a 4.155±
0.01c

4.566±
0.02b

5.37±0.03a 0.0077  < 0.0001 0.5975

Albumin (g/
dL)

2.4±0.01a 2.42±0.02a 2.41±0.02a 2.30±0.02
b

2.39±
0.01a

2.4±0.04a 0.0080  < 0.0001 0.7972

Globulins (g/
dL)

1.85±0.01c 2.20±0.02b 3.04±0.06a 1.86±0.01
c

2.18±
0.02b

2.97±0.02a 0.0495  < 0.0001 0.5833

A/G 1.29±0.01a 1.1±0.02a 0.79±0.06b 1.24±
0.01a

1.096±
0.01a

0.81±0.02b 0.0762  < 0.0001 0.3429

VLDL (mg/dL) 23.75±0.04c 22.69±0.19d 21.86±0.01e 25.27±0.07
a

24.88±
1.83ab

24.57±0.15b  < 0.0001  < 0.0001 0.0037

Cholesterol 
(mg/dL)

115.93±0.47b 105.04±
1.13d

103.69±0.53
d

125.30±
0.52a

115.87±
1.11b

110.96±
1.40c

 < 0.0001  < 0.0001 0.2821

Triglycerides 
(mg/dL)

118.77±0.78c 113.44±
0.98d

109.30 ± 0.56
e

126.376±
0.38a

124.4±
0.92ab

122.86±
0.77b

 < 0.0001  < 0.0001 0.0037

Creatinine 
(mg/dL)

0.93±0.02c 0.87±0.01d 0.78±0.01e 1.28±
0.04a

1.13±
0.04a

1.03±0.01b  < 0.0001  < 0.0001 0.0003

Blood Urea 
nitrogen (mg/
dL)

16.81±0.03c 15.14±
0.011d

14.63±0.02e 21.51±
0.04a

19.20±0.02
b

18.90±0.05b  < 0.0001  < 0.0001  < 0.0001

Ast (U/L) 34.20±0.24d 35.36±0.43d 33.5.±0.47d 55.16±
0.25a

50.6±
0.47b

42.73±0.48c  < 0.0001  < 0.0001 0.1165

Alt (U/L) 28.03±0.08c 28.19±0.26c 26.63±0.26d 44.1±
0.12a

43.27±
0.39a

35.98±0.31b  < 0.0001  < 0.0001  < 0.0001

Biochemical parameters of Nile tilapia (Oreochromis niloticus) reared for 8 weeks and fed on normal fish diet, moringa oleifera methanolic 
extract and Moringa oleifera methanolic extract with phytase enzyme for 8  weeks for total protein, albumin, globulin, albumin/globulin 
(A/G) ratio, very low-density lipoprotein (VLDL), cholesterol, triglycerides, Urea, creatinine, aspartate aminotransferase (AST) and alanine 
transaminase (ALT). Data are expressed as Mean ± SEM where n = 5. small letters indicate significant differences (two-way ANOVA). ** These 
parameters were measured in serum. Small letters indicate significant differences (two-way ANOVA). Values with different superscripts within 
a row are significantly different (p < 0.05)
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Hepatic inflammatory response-related gene expression

Liver inflammatory-related genes including cox2, glypho-
sate challenged group exhibited a marked increase in the 
expression level of hepatic cox2 paralleled with the control 
group. However, dietary supplementation of MOLE either 
alone or with phytase reduced the transcriptional levels of 
liver cox2 (Fig. 6B) in both pre and post-glyphosate chal-
lenge compared with the control groups.

Intestinal apoptosis-related gene expression

Liver apoptosis-related genes including caspase 3;glypho-
sate challenged group exhibited a marked increase in the 
expression level of hepatic caspase3 compared with the 
control group. Moreover, dietary supplementation of MOLE 
either alone or with phytase downregulated the transcrip-
tional levels of liver caspase 3 (Fig.  6C) in both pre and 
post-glyphosate challenge compared with the glyphosate 
challenged group.

gherlin (Fig.  5F) and intestinal NPY (Fig.  5G) both pre 
and post glyphosate challenge compared with the control 
groups. However, dietary supplementation of MOLE and 
phytase markedly reduced hepatic igf-bp (Fig.  5E) and 
myst (Fig.  5D) in both pre and post-glyphosate challenge 
compared with the control groups. Meanwhile, fish group 
supplemented with MOLE only revealed a non-significant 
change in the hepatic expression level of gh, ilgf, myogenin, 
myostatin while exhibit a significant reduction in the intesti-
nal gerlin with increased NPYa pre and post-challenge com-
pared with the control groups.

Hepatic antioxidant genes expression

Concerning the expression level of liver antioxidant-related 
gene (sod); glyphosate challenged group revealed a marked 
decline in the expression level of hepatic sod compared 
with the control group. Whereas, dietary supplementation of 
MOLE either alone or with phytase enhanced the transcrip-
tional levels of hepatic sod (Fig. 6A) in both pre and post-
glyphosate challenge compared with the control groups.

Fig.  2  Representative photomicrograph of gills from different treat-
ment groups. A) Control gills showing normal histological appear-
ance of primary and secondary lamellae. B) Glyphosate Challenged 
group showing diffuse lamellar fusion (thin arrow) with lamellar 
congestion and hemorrhage (thick arrow). C) MOLE showing nor-
mal histological appearance. D) MOLE challenged with glyphosate 

group showing focal lamellar thickening (thin arrow) with interlamel-
lar congestion (thick arrow). E) MOLE and phytase showing lamel-
lar congestion with focal lamellar fusion (thin arrow). F) MOLE and 
phytase challenged with glyphosate showing moderate to severe 
lamellar thickening (thin arrow) with lamellar fusion besides lamellar 
lifting. Image magnification = 100x
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The plant extract utilized in our study was of the genus 
Moringa. The morphology of the leaves of M. oleifera and 
M. stenopetala are quite similar with few differences regard-
ing the shape and apex of the leaves which could be variable 
according to the growth stage (Azza 2014; Boopathi and 
Abubakar 2021). In addition, wide variation in morpho-ana-
tomical features of the M. oleifera accessions is reported. 
For this reason, we carried out a chemical investigation for 
assuring the species authentication. The plant was extracted 
with methanol (90%) to reduce the phytic acid, tannins and 
saponin glycoside content in the resulting extract as these 
compounds are soluble in water and less soluble in alco-
hol. The alkaloids detected in MOLE are determinant for M. 

Discussion

Water pollution with herbicide derivatives is a major worry 
that endangers the sustainability and value of ecosystems 
and aquatic animals (Blahova et al. 2020; Bojarski and 
Witeska 2020). Incorporated agriculture–aquaculture sys-
tems contribute directly to pollution with herbicides, which 
can adversely infleunce aquatic animals health status (Soror 
et al. 2021; Yousef et al. 2021). This research demonstrated 
that waterborne herbicides negatively impact the metabolic 
and biochemical functions of aquatic animals (Samanta et 
al. 2014; Abdel-Warith et al. 2021).

Fig.  3  Representative photomicrograph of liver from different treat-
ment groups. A) Control liver showing normal histological appear-
ance of hepatic parenchyma and hepatopancrease. B) Glyphosate 
Challenged group showing diffuse swollen hepatocytes (thick 
arrow) with multifocal coalescing hepatocyte necrosis (arrowhead) 
and inflammatory aggregates (thin arrow). C) higher magnification 
showing necrotic hepatocytes (arrowhead) surrounded with inflam-
matory aggregates (thin arrow) beside diffuse hepatic vacuolation 
(thick arrow) and sinusoidal congestion. D) Glyphosate Challenged 

group showing diffuse extensive hepatic vacuolation (thick arrow) 
and minimal sinusoidal congestion (thin arrow). E) MOLE showing 
moderate hepatic vacuolation (thick arrow) with sinusidal congestion 
(thin arrow). F) MOLE challenged with glyphosate showing diffuse 
hepatic vacuolation (thick arrow). G) MOLE and phytase showing 
moderate hepatic vacuolation (thick arrow). H) MOLE and phytase 
challenged with glyphosate showing diffuse severe hepatic vacuola-
tion (thick arrow). Image magnification = 100x
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and grass carp (Ctenopharyngodon idellus) (Xu et al. 2023). 
The growth-promoting properties and health benefits of MO 
are linked to its rich array of bioactive components, includ-
ing vitamins, flavonoids, phenolic acids, tannins, isothio-
cyanates, and saponins, that are abundant in various parts 
of the plant, particularly the leaves, and exert significant 
growth-stimulating effects (Vergara-Jimenez et al. 2017). 
Additionally, MOL contains high concentrations of antioxi-
dants as vitamin C, β-carotene, and quercetin, that enhance 
the health situations of fish (Makkar and Becker 1997; Ver-
gara-Jimenez et al. 2017).

Moreover, adding phytase to the MOLE-supplemented 
diet improves growth performance matched to control 
group. Debnath et al. (2005) observed that the inclusion of 

oleifera. Saponin glycosides and tannins were not detected 
in MOLE by methanol solvent. Inositol monophosphate is a 
phytate compound and was detected in our study.

The growth parameters measured in our study (FBW, 
WG%, SGR, PER, and FCR) were considerably enhanced 
with the dietary inclusion of MOLE and phytase indicat-
ing significantly higher growth indices compared to other 
experimental groups. The performance improvement 
observed in the MOLE and phytase group probably attrib-
uted to the high content of bioactive compounds in MOLE, 
as p- quercetin, and kaempferol. These compounds are 
known to enhance the growth indices of numerous fish spe-
cies, as common carp (Cyprinus carpio) (Ahmadifar et al. 
2021), snakehead fish (Channa argus) (Kong et al. 2022), 

Fig.  4  Representative photomicrograph of intestinal section from 
different treatment groups. A) Control group showing normal his-
tological appearance of intestinal villi. B, C) Glyphosate Chal-
lenged group showing extensive apical desquamation (thin arrows) 
with mild lamina proprial inflammatory aggregates (arrowhead). D) 
Glyphosate-Challenged group showing diffuse shortened, stunted 
fused villi (thin arrow) with marked lamina proprial cellular infilter-
ates (arrowhead) and submucosal edema. E) MOLE showing nor-

mal histological appearance. F) MOLE challenged with glyphosate 
showing mild intestinal vacuolation (thick arrow). G) MOLE and 
phytase showing few intestianl vacuolation (thick arrow) with few 
invaded inflammatory cells (arrowhead). H) MOLE and phytase 
challenged with glyphosate showing few vacuolation and apoptotic 
bodies (thick arrow) beside minimal submucosal edema (arrowhead). 
Image magnification = 100x
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absorbed minerals (Sokrab et al. 2012). Similar conclusions 
were reached by Shahzad et al. (2017) and Hussain et al. 
(2017). When C. catla fingerlings were fed a diet with 900 
FTU/kg of phytase, they recorded the utmost digestibility 
of crude protein (CP) and gross energy (GE). Similarly, 
Maas et al. (2019) perceived an enhancement of growth 

the phytase enzyme in Atlantic salmon diet improved its 
digestibility coefficients at an optimal dose of 500 FTU/
kg. Hussain et al. (2014) noted that phytase can break down 
antinutrients in the diet, as phytic acid and trypsin inhibitors, 
thereby increasing nutrient digestion. Phytase enzyme con-
verts such anti-nutritional substances into simple, definitely 

Fig. 6  Relative gene expression of antioxidant-related (sod), and inflammatory-related genes (cox2) and apoptotic gene (caspase-3). Columns with 
different superscript letters in the same figure are significantly different (p ≤ 0.05)

 

Fig. 5  Relative gene expression of hepatic growth-related genes. GH: 
growth hormone gene, igf: insulin-like growth factor, igfbp: insulin-
like growth factor binding protein, NPY: Neuropeptide Y. Columns 

with different superscript letters in the same figure are significantly 
different (p ≤ 0.05)
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contains great concentrations of essential amino acids as 
lysine, methionine, isoleucine, leucine, tryptophan, phenyl-
alanine, threonine, and valine. MOLM has a high content 
of protein, ranging from 25% (Makkar and Becker 1996) to 
32% (Soliva et al. 2005). Moringa Oleirfera is also rich in 
protein (32–35%), amino acids and essential vitamins (Has-
san et al. 2018).

In teleost fish, growth and development of skeletal mus-
cle are largely dependent on the availability of nutrient, that 
modulates the GH/IGF1 axis (Reinecke et al. 2005; Liu et 
al. 2020). Our study found that the expression levels of gh, 
ilgf, and myogenin were statistically non-significant in the 
fish group fed MOLE alone, both pre- and post-challenge. 
However, these levels were significantly elevated in the fish 
group fed both MOLE and phytase, pre- and post-glypho-
sate challenge. In contrast, ilgf1bp1a and myostatin levels 
were markedly raised in the glyphosate-challenged group, 
indicating that ilgf1bp1a and myostatin exert an inhibitory 
effect on gh, ilgf, and myogenin activities in Nile tilapia 
challenged with glyphosate.

Herein, the increase in growth and diet utilization 
observed in this study by phytase addition to MOLE may 
be attributed to the immune-nutritional components of M. 
oleifera and its ability to enhance feed digestibility, absorp-
tion, and assimilation. This is achieved through the aug-
mented digestive enzymes and healthy intestinal microflora 
promoted by M. oleifera's prebiotic activity (Nkukwana et 
al. 2014).

Biochemical indices serve as valuable biomarkers for 
evaluating both physiological and health conditions of fish, 
evaluating the nutritional value of fish diets, and evaluat-
ing the impacts of hazardous compounds (Aliko et al. 2018; 
Khafaga et al. 2020). Meanwhile, liver injury biomarkers 
such as ALT and AST enzymes and kidney indices including 
blood urea nitrogen and creatinine levels were significantly 
elevated in the glyphosate-intoxicated group. These results 
indicate the occurence of hepatotoxicity, liver dysfunction, 
and hepato-renal damage in fish exposed to glyphosate 
(Bacchetta et al. 2014). The results are in line with Yousef 
et  al. (2021), who detected high serum activities of AST 
and ALT in common carp (Cyprinus carpio) subjected to 
glyphosate. Increased urea levels are associated with gill 
damage, while high creatinine levels are linked to muscular 
dysfunction (Soror et al. 2021). The declined concentration 
of total proteins, albumin, and globulins due to glyphosate 
toxicity, indicates liver tissue damage from oxidative stress 
(Brum et al. 2018).

TC, TG, and VLDL-C levels were elevated in the glypho-
sate-intoxicated group of Nile tilapia. Dietary inclusion of 
MOLE modulated lipid profiles in tilapia by prompting a 
hypolipidemic effect. Monir et al. (2020) and El-Kassas 
et al. (2020a, b) revealed a substantial reduction in serum 

performance of Nile tilapia (Oreochromis niloticus) on a 
sunflower meal-based diet with 1000 FTU/kg of phytase.

Importantly, MOLE alone demonstrated a substantial 
decrease in growth and ration consumption when com-
pared to control group. This reduction may be due to the 
antinutritional components as phytic acid (Spinelli et al. 
1983; Richardson et al. 1985; Hossain and Jauncey 1993). 
These substances have been shown to reduce or hinder fish 
development performance. Moreover, phytate can affect the 
bioavailability of different minerals and decrease protein 
digestibility by forming complexex of phytic acid and pro-
tein, which can significantly harm the pyloric caecum by 
inhibiting nutrient absorption (Francis et al. 2001). previous 
researches have shown that 5–6 g of phytic acid per kg of 
diet can negatively affect the growth rate of common carp 
(Hossain and Jauncey 1993) and rainbow trout (Spinelli et 
al. 1983). Regarding total phenolics, a comparatively high 
levels of total phenolic compounds from mucuna beans in 
the diet of common carp has been recorded to considerably 
retard growth performance and feed utilization (Siddhuraju 
and Becker 2001). High quantities of total phenolic com-
pounds have been shown to impair digestibility of protein 
and availability of amino acids by forming phenolic-protein 
and/or phenolic-protein-enzyme complexes. Furthermore, 
Hilton et al. (1983) also mentioned a similar inhibition in 
the growth performance of rainbow trout supplemented 
with a high-fiber diet. Similar studies also indicated that 
natural extracts like garlic oil supplementation had positive 
effects on growth, haematology, blood biochemistry, hepa-
tosomatic index and histopathological parameters in Nile 
tilapia (Oreochromis niloticus) exposed to cypermethrin 
toxicity (Öz et al. 2024).

To understand the underlying mechanism influenc-
ing growth performance we evaluated the mRNA expres-
sion levels of some growth-related genes. In the current 
study, we found that MOLE supplemented group exhibited 
reduced FBW, BWG%, SGR with non-significant change 
of hepatic gh, ilgf, myogenin, ilgfbps and myostatin with 
raised NPYa pre and post-glyphosate challenge compared 
with the control groups. Interestingly, an opposite finding 
by phytase addition to MOLE was detected pre and post-
glyphosate challenge compared with the control groups. 
Both GH (growth hormone) and IGF (insulin-like growth 
factor) are potent growth regulators that promote anabolic 
effects on carbohydrate and protein metabolism, interven-
ing the actions of growth hormone (Perez-Sanchez and Le 
Bail 1999; Amin et al. 2019). An increase in ghrelin ulti-
mately leads to increased availability of GH (Kojima and 
Kangawa 2005; Ceranowicz et al. 2010; Lewitt 2013). Tests 
performed in sheep by Sugino et al. (2002) showed that 
the infusion of amino acids and proteins enhances plasma 
ghrelin levels. According to Olaofe et al. (2013), M. oleifera 
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which protect against oxidative stress-associated damage 
(Kou et al. 2018).

In this regard, the high content of ascorbic acid, pheno-
lics, and flavonoids such as quercetin, and kaempferol in 
Moringa leaf extract helps restore levels of glutathione, glu-
tathione peroxidase (GPx), glutathione-S transferase (GST), 
and glutathione reductase (GR) by preventing lipid peroxi-
dation and scavenging free radicals (Sharifudin et al. 2013; 
Singh et al. 2014; Xu et al. 2019).

Oxidative stress is identified as both a cause and a result 
of inflammation. It prompts the translocation of NF-kB into 
the nucleus, leading to the transcription of various harmful 
pro-inflammatory genes (Won et al. 2006; Zheng et al. 2017; 
Hamed et al. 2022). Additionally, oxidative stress enhances 
pro-inflammatory cytokines including tnf-α and il-6, which 
then activate nf-kb (Akhigbe and Ajayi 2020; Hamed et al. 
2022). Ma et al. (2019) revealed that glyphosate treatment 
increased NF-κB levels in the gill tissue of common carp, 
likely due to the accumulation of excess ROS. These results 
are consistent with earlier studies in which the tnf-α and 
il-1β genes were upregulated in the gills of carp following 
exposure to glyphosate (Ma et al. 2019; Wang et al. 2020). 
In the same time, Tang et al. (2020) recorded an increase 
in il-1β, il-6 and tnf-α in different parts of rat small intes-
tine after Glyphosate exposure. These findings concluded 
that glyphosate application triggered the NF-κB pathway, 
resulting in increased secretion of pro-inflammatory cyto-
kines, that initiated an inflammatory response. The current 
study revealed that glyphosate-challenged group showed a 
marked increase in hepatic cox-2 expression. However, the 
inclusion of moringa and phytase successfully reduced its 
expression level. Fard et al. (2015) reported that M. oleifera 
hydroethanolic bioactive leaf extracts significantly reduced 
cox-2 protein expression and suppressed the nf-κb signaling 
pathway, proposing the potent activity of M. oleifera bioac-
tive leaf extract as an inhibitor of inflammatory cytokines 
and mediators.This finding aligns with the fingings by Xu et 
al. (2019), which revealed the anti-inflammatory and anti-
oxidant effects of crude extracts from M. oleifera leaves.

Hence, the antioxidative and anti-inflammatory prop-
erties of MOLE observed in this study can be ascribed to 
its phenolic compounds and flavonoids which potentiate 
MOLE to be beneficial in preventing glyphosate-induced 
toxicity.

ROS up-regulate genes that encode redox-regulated tran-
scription factors that are correlated with the initiation stage 
of apoptosis (Sinha et al. 2013). The caspase-cascade system 
plays an important role in the induction, transduction,and 
amplification of intracellular apoptotic signals. At the 
beginning of apoptosis, initiator caspases (caspase-8 and 
−9) cleave and activate downstream effector caspases 
(caspase-3, −6, and −7), which directly cause apoptosis. 

triglyceride (TG) and total cholesterol (TC) values in Nile 
tilapia-fed MOLE-based diets, other researchers indicated 
that allspice supplementation at 10 g kg−1 for 60 days, has 
adequate beneficial effects by improving the haemato-
immunological and biochemical status of O. mossambicus 
after acidic stress (Yılmaz et al. 2015).

The reduced serum TC levels may be accredited to the 
presence of β-sitosterol (Vergara-Jimenez et al. 2017), that 
inturn decreases the absorption of endogenous cholesterol, 
enhances its secretion from the gastrointestinal tract, and 
facilitates its excretion as neutral steroids (Mehta et al. 
2003). Furthermore, the lowered levels of serum choles-
terol, triglycerides, and lipoprotein could be accredited to 
the suppression of cholesterol synthesis, leading to a dimi-
nution of liver intracellular sterols (Mehta et al. 2003).

Oxidative stress occurs in case of overproduction of 
ROS and the body’s endogenous antioxidant mechanisms 
are unable to effectively scavenge and neutralize these ROS 
(Nordberg and Arnér 2001; Le Bras et al. 2005).

Long-term exposure to glyphosate-based herbicides 
induce excessive production of ROS and oxidative stress 
in fish species (Li et al. 2017). This exposure inhibits the 
activities of catalase (CAT), superoxide dismutase (SOD), 
and level of glutathione (GSH) in the gills of common carp 
and the liver of Prochilodus lineatus (Modesto and Marti-
nez 2010; Ma et al. 2019). Similarly, reduction was detected 
in the serum, gills and liver of Nile tilapia exposed to higher 
glyphosate concentrations (4 and 16 mg/L). Acute glypho-
sate exposure also led to lipid peroxidation in the neotropi-
cal fish Prochilodus lineatus (Modesto and Martinez 2010) 
other studies also indicated that antioxidant enzyme-related 
genes (SOD, CAT, GPx, and GST) were significantly up-
regulated to suppress oxidative stress while the expression 
levels of immune-related genes (TGF-β, TGF-α and IL1-
β) decreased in Nile tilapia exposed to a dose of ≥ 20 mg/L 
GBH (Acar et al. 2021).

Cellular antioxidants are crucial components of tissues 
that protect cells against oxidative damage induced by ROS 
(Hamed et al. 2022). SOD transforms superoxide radi-
cals into dioxygen and hydrogen peroxide, which catalase 
additional breaks down into water and molecular oxygen 
(Akhigbe and Ajayi 2020). Sreelatha and Padma (2009), 
Charoensin (2014) demonstrated that MOLE exhibits a 
robust scavenging influence on 2,2-diphenyl-1-picrylhy-
drazyl (DPPH) free radicals, superoxide radicals, and nitric 
oxide radicals, thereby protecting biomolecules from oxida-
tive damage.

However, MOLE, either alone or with phytase, was able 
to enhance hepatic sod gene expression both before and after 
glyphosate challenge compared with the control groups. 
These antioxidant properties of MOLE might be due to its 
content of considerable level of phytogenic components, 
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that glyphosate exposure promotes unfavorable cytological 
modifications in the gills, liver, and intestine.

Fish gills are the principal location for ion exchange with 
the environment, as well as the major channel of pesticide 
penetration, because they are constantly in contact with 
water (Abdel-Moneim et al. 2012; Tabassum et al. 2016; 
Soare et al. 2019).

In the current experiment, the glyphosate-challenged 
group exhibited diffuse lamellar fusion, lamellar congestion, 
and hemorrhage. This is in accordance with the findingd by 
Ma et al. (2019) who concluded that exposure to 104.15 mg 
L^−1 of glyphosate for 7 days resulted in significant dam-
age to fish gills. Similar observations have been observed in 
neotropical fish (Shiogiri et al. 2012), Nile tilapia (Jiraung-
koorskul et al. 2002; Samanta et al. 2017), Poecilia reticu-
lata (Rocha et al. 2015), and Bloch (Samanta et al. 2016), 
revealing that exposure to glyphosate leads to gill damage in 
Nile tilapia, ranging from mild to severe lamellae necrosis, 
congestion, and hemorrhage.

In this study, the glyphosate challenged group showed 
diffusely swollen hepatocytes with multifocal coalescing 
hepatocyte necrosis and inflammatory aggregates. In line 
with, Mohapatra et al. (2020); Verma et al. (2020) who stated 
that the most frequent negative consequences of pesticide 
exposure on the liver include necrosis, cellular deformity 
linked to nuclear hypertrophy and vacuolization, sinusoidal 
enlargement, and congestion of sinusoidal spaces caused by 
WBC infiltration. Similarly, Barbhuiya and Dey (2014) who 
observed that Heteropneustes fossilis had central venous 
congestion, hepatocyte degradation, cytoplasmic vacuoliza-
tion, vacuoles in sinusoids, and hepatocytes with pyknotic 
nuclei after 21 days. On exposure to 5, 10 and 20 ppm con-
centrations of an organophosphate pesticide for 25 days, 
Heteropneustes fossilis showed cytoplasmic degeneration, 
pyknosis in liver tissues, vacuoles in hepatic cells, and rup-
ture in hepatic blood vessels (Islam et al. 2019).

Furthermore, glyphosate challenged group showed 
extensive apical desquamation with mild lamina propria, 
inflammatory aggregates with diffuse shortened, stunted 
fused villi with marked lamina propria cellular infiltrate, 
and submucosal edema. Begum et al. (2013) reported that 
Heteropneustes fossilis subjected to 7 ppm of arsenic con-
centration for 15 days had degenerated villi, and at 20 ppm, 
damaged serosa was detected, leading to mucosal fusion 
and edema. Further Islam et al. (2019) reported that Hetero-
pneustes fossilis when subjected to organophosphate pes-
ticide, showed swelling, disintegrating sub-mucosa, mildly 
damaged serosa, and fused or ruptured villi at concentra-
tions ranging from 20 to 25 ppm. Interstingly, Shahzadi et 
al. (2024) detected ameliorative effects of Moringa oleifera 
against carbofuran induced toxicity in rohu Labeo rohita.

In this study, hepatic expression levels of caspase 9 and 3 
were upregulated implying that GLY can induce apopto-
sis in the liver of fish. In the intrinsic pathway, the critical 
point in the apoptotic signaling progression is the release 
of cytochrome c from mitochondria after the collapse of 
mitochondrial membrane potential (Jaeschke et al. 2018). 
Once cytochrome c binds with apoptotic protease activating 
factor 1 (Apaf-1) and ATP, leading to the initiation of the 
caspase cascade reactions that activates caspase-9 and cas-
pase-3 which can destroy the cells. Hao et al. (2019) stated 
that the concentration of GLY increases; the discharge of 
cytochrome c into the cytoplasm increases.

Intoxicated fish by glyphosate upregulated intestinal cas-
pase-3 expression which was ameliorated by MOLE admin-
istration through its antioxidant and anti-inflammatory 
properties confirming the potential antiapoptotic impact 
of MOLE. The phenolic compounds in MO Leaves act as 
anti-inflammatory, antioxidant, and antiapoptotic factors 
(Shahidi and Yeo 2018). Pérez-Galán et al. (2006) con-
cluded that the excess ROS can prompt apoptosis in cells. 
MO leaves, rich in antioxidants and cytoprotective natural 
compounds, demonstarte a promising future strategy for 
reducing abnormalities associated with cellular peroxida-
tive damage and apoptosis (Lin et al. 2021; Khalid et al. 
2022). Ma et al. (2019) indicated that, the expression level 
of bax is increased, while bcl-2 is decreased in the gills of 
glyphosate-treated fish. This indicates that activating bax 
and inhibiting bcl-2 could initiate the caspase cascade reac-
tion via the mitochondria-mediated pathway in the gills of 
carp following exposure to glyphosate (Miest et al. 2012). 
In this study, a significant elevation in mRNA level of cas-
pase3 was recorded in the glyphosate-treated group, this 
indicates that glyphosate exposure initiated mitochondria-
mediated apoptosis in fish intestine, which is also revealed 
by Sulukan et al. (2017) who demonstrated that glyphosate 
exposure caused cellular death in zebrafish. M. oleifera 
leaf ethanolic extract (MLEE) decreased the expression of 
caspase-3 and bax genes while increasing the expression 
of bcl-2 genes, hence improving mitochondrial membrane 
potential (Samie et al. 2018; Abdel-Daim et al. 2020) owing 
to MLEE’s anti-apoptotic properties. Meanwhile, reproduc-
tive deficits induced by alcohol in male rats were attenu-
ated by phenolic substances such as p-coumaric acid, which 
reduced the immunoreactivity of caspase-3, caspase-7, and 
p21 (Nishi et al. 2018).

Histology studies are considered a sensitive method for 
diagnosis of organ toxicity due to xenobiotics (Lanning et 
al. 2002). They offer detailed information on the acute and 
chronic impacts of toxicants on specific organs (Amacher et 
al. 2006). The histological changes reported in our analy-
sis are consistent with earlier investigations, demonstrating 
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Conclusion

In summary, the findings indicate that MOLE and phytase 
significantly improved growth performance and feed utili-
zation while offering protection against glyphosate-induced 
kidney and liver toxicity and oxidative stress. This protec-
tive action is linked to their ability to modulate antioxidant, 
anti-inflammatory, and anti-apoptotic signaling pathways, 
owing to their rich content of bioactive compounds such as 
polyphenols, flavonoids, and essential nutrients.
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