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Abstract—Automatic Program Repair (APR) has been pro-
posed to help developers and reduce the time spent repairing
programs. Recent APR tools have applied learned templates (fix
patterns) to fix code using knowledge from fixes successfully
applied in the past. However, there is still no general agreement
on the representation of fix patterns, making their application
and comparison with a baseline difficult. As a consequence, it is
also difficult to expand fix patterns and further enable APR.

We automatically generate fix patterns from similar fixes and
compare the generated fix patterns against a state-of-the-art
taxonomy. Our automated approach splits fixes into smaller,
method-level chunks and calculates their similarity. A threshold-
based clustering algorithm groups similar chunks and finds
matches with state-of-the-art fix patterns. In our evaluation, we
present 33 clusters whose fix patterns were generated from the
fixes of 835 Defects4J bugs. Of those 33 clusters, 22 matched a
state-of-the-art taxonomy with good agreement. The remaining
11 clusters were thematically analysed and generated new fix
patterns that expanded the taxonomy. Our new fix patterns
should enable APR researchers and practitioners to expand their
tools to fix a greater range of bugs in the future.

Index Terms—automatic program repair, similarity metric,
clustering, fix pattern

I. INTRODUCTION

Automatic Program Repair (APR) has been an increasingly
popular research topic for more than a decade [1] and APR
tools are gradually being adopted by industry [2]–[4]. APR
tools aim to find a repaired variant of a program in the infinite
search space of variants. To reduce the size of the search space
and improve repair quality, many researchers have reported
benefit in using learned templates (fix patterns) out of known
(human-written or automatically generated) bug fixes.

The fix patterns analysed and applied by APR tools have
been either collected from the literature [5]–[8] or generated
from bug fixes (manually [9], [10] or automatically [3], [11]).
Some researchers [12]–[14] have mined data platforms and
repositories with human fixes to generate fix patterns and
collect information about bugs and their human-written fixes.
To evaluate fix patterns, template-based APR tools [3], [5]–
[9], [11]–[13], [15]–[18] apply templates to buggy code and
leverage knowledge about previous coding repairs. Expanding
state-of-the-art taxonomies by proposing new fix patterns and

applying them in current APR tools would help APR tools
to fix a greater range of bugs and improve their currently
limited performance. However, comparison against a state-
of-the-art taxonomy and its expansion is difficult due to the
lack of a common representation of fix patterns in the APR
community. Koyuncu et al. [11] manually compared their fix
patterns against the fix patterns found in the literature. Our
work is the first (to the best of our knowledge) that does this
comparison automatically.

Our approach automatically clusters bug fixes and generates
fix patterns. It is based on splitting human-written fixes into
smaller, method-level chunks; then clustering similar chunks
and generating their fix patterns, which are compared against
state-of-the-art fix patterns [6].

Some bug fixes are difficult to cluster due to their com-
plexity. In an analysis of human-written bug fixes, Sobreira et
al. [10] showed that 27% of bug fixes are complex and change
more than one method. In general, the majority of APR tools
are still not mature enough to repair multiple-location bugs.
In Listing 1, we show an example of a multiple-location bug
Chart-15 and its human-written fix from Defects4J [19].

1377a1378,1380
+ if ( this . dataset == null ) {
+ return 0.0;
+ }

double result = 0.0;
−−−
2050a2054
+ if ( this . dataset != null ) {

state . setTotal ( DatasetUtilities
. calculatePieDatasetTotal ( plot . getDataset ()));

−−−
2052a2057
+ }

Listing 1: A human-written fix for Chart-15 adds the lines of
code marked with ’+’.

The buggy code accesses a null variable and the fix consists
of inserting if statements (as null checks) into two methods.
APR tools [6], [11], [15], [18], [20]–[24], are unable to
generate fixes similar to the human fix in Listing 1, one of the
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reasons being that such multiple-location bugs require two fix
patterns to be applied simultaneously. To tackle this problem,
we apply method-level splitting of bug fixes. Splitting fixes
was also suggested by Kreutzer et al. [25] with the limitation
that their implementation ignores the parts of fixes outside
of methods. By contrast, we divide a bug fix into code
modifications from each method as well as from the class
declaration. This allows us to recognise smaller parts of fixes
that are more likely to be clustered with parts of other fixes.

To represent code modifications (potential bug fixes), we use
a linear sequence of simplified Abstract Syntax Tree (AST)
nodes. We also divide each sequence into separated parts,
where neighbour nodes form sub-sequences of length N called
n-grams. We compare n-grams of bug fixes to calculate their
similarity and cluster the fixes. Using n-grams ensures that
a similarity formula includes the similarities in both the AST
nodes and the order of neighbour-nodes that form the n-grams.
This ensures finding similar fixes even when they consist of
modifications that are not in the same exact order.

We apply a similarity metric based on mutual informa-
tion [26], proposed by Baxter et al. [27] for clone detection.
We adapted the metric formula to be able to apply it to the
code before and after a bug fix, which is necessary for finding
similarities between fixes.

For clustering similar fixes, we use threshold-based clus-
tering [28]. Instead of pre-defining the number of clusters as
in the traditional k-means algorithm [29], [30], the threshold-
based algorithm generates as many clusters as necessary to
ensure that items from a dataset are in the same cluster
only if their similarity is above the threshold. Although the
highest threshold means that fixes from the same cluster are
equivalent, lowering the threshold value could be useful for
ranking fix patterns in APR tools and choosing a similar, but
not equivalent fix pattern for a repair.

The contributions of this paper are as follows:
• We introduce a tool that automatically generates fix

patterns from human-written fixes. The tool splits fixes
that modify multiple methods into smaller chunks, which
are simpler code modifications more likely to be clustered
with other chunks.

• We represent chunks as linear sequences of simplified
AST nodes forming n-grams. N-grams are straightfor-
ward to compare and to calculate similarity from.

• We present a metric (adapted from [27]) for calculating
the similarity of chunks. Our threshold-based clustering
algorithm (based on [28]) uses similarity to automatically
group similar chunks and generate fix patterns.

• Our tool automatically compares fix patterns against a
state-of-the-art taxonomy [6] (regardless of the represen-
tation of fix patterns) by comparing the clusters that can
be described by the same fix pattern.

• We present a methodology for manually confirming new
fix patterns and our proposed new fix patterns expand the
state-of-the-art taxonomy from Liu et al. [6].

We use a well defined dataset for our evaluation – De-
fects4J [19] with 17 open-source projects containing 835

bugs in total and their human-written fixes. We automatically
cluster these fixes and generate fix patterns, which show
good agreement with a manual state-of-the-art taxonomy of
fix patterns [6]. We thematically analyse the clusters that do
not match the taxonomy and propose an additional eleven fix
patterns that expand the taxonomy and can guide APR tools
in fixing a greater range of bugs. Our replication package is
available online: https://github.com/scc-fixie/fix-patterns/.

II. BACKGROUND

Using code similarity in APR helps to find fixes and apply
them to buggy code [15], [18], [21], [22], [31]. Ji et al. [31],
Xin et al. [22], Wen et al. [21] and Jiang et al. [18] presented
tools that calculated the similarity between fixing ingredients
and buggy code. To rank candidate patches, Saha et al. [15]
calculated the contextual similarity between a fix and the
context of a buggy code snippet. One component of the
reusability metric [31] was based on the similarity metric
proposed by Baxter et al. [27]. Baxter’s formula calculates
the code similarity for clone detection Type 2 [32], which is a
copy of code where a variable name, a type or a method name
can differ from the original. In our work, we modify and apply
Baxter’s similarity formula on human-written fixes. Finding
similarity at the level of code clones Type 2 allows us to find
fixes across various methods, classes and projects that belong
to the same fix pattern. Previous studies have used similarity
metrics [15], [18], [21], [22], [31] for applying existing fix
patterns, rather than for discovering new fix patterns.

To find similarities, APR tools usually represent code as
tokens or AST nodes. When a method is converted into a
linear sequence of AST nodes or tokens, the linear sequence
can then be chopped up into sub-sequences using a sliding
window of fixed length to generate n-grams. Using n-grams
is a simpler model than an AST, and it preserves the order
of neighbour nodes/tokens that form an n-gram. In defect
prediction, Shippey et al. [33] used n-grams to identify com-
mon faulty AST nodes. Wang et al. [34] used n-grams in bug
detection by identifying uncommon n-grams as bugs. Our use
of n-grams differs from Shippey’s and Wang’s since we use
n-grams to find similar fixes and generate their fix patterns.

Although APR has been a popular topic for more than a
decade, there is still no well-known and established taxonomy
of fix patterns accepted by APR researchers [35]. The first
taxonomy was proposed by Pan et al. [36], who manually an-
alyzed five open-source projects and extracted 27 fix patterns.
Following this work, Kim et al. [9] presented ten fix patterns
generated from open-source projects and evaluated them by
their template-based APR tool, which outperformed an APR
tool based on random edits. Sobreira et al. [10] manually
generated 26 patterns from Defects4J human-written bug fixes.
Koyuncu et al. [8] collected 13 fix patterns from the litera-
ture, implemented them an APR tool and evaluated them on
Defects4J. To generate fix patterns from human-written fixes,
researchers have also proposed mining data platforms and
software repositories [12]–[14]. Liu and Zhong [12] presented
13 fix patterns generated from Stack Overflow. Long et al. [13]
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focused on three types of bugs (null pointer, out of bounds,
and class cast) from GitHub repositories and generated related
fix patterns. Rolim et al. [14] presented nine fix patterns, also
from human fixes from GitHub repositories. All the work
mentioned above created a new set of fix patterns, instead
of comparing against and improving an already published and
known taxonomy, making the current state-of-knowledge in
APR fix patterns disparate and difficult to build on.

Liu et al. [6] presented a systematic and detailed fix pattern
taxonomy. The taxonomy contains 35 fix patterns collected
from the literature and was presented together with the bugs
from the Defects4J dataset automatically repaired by their tool
TBar using these patterns. TBar outperforms other state-of-
the-art APR tools in terms of the number of fixes. Since the
TBar taxonomy is a systematic selection of fix patterns from
the literature, we use it as a baseline in our work.

Another tool for mining software repositories, FixMiner,
proposed by Koyuncu et al. [11], generated 31 fix patterns.
Due to the lack of common representation of fix patterns in the
APR literature, the authors manually performed a comparison
of the FixMiner fix patterns against twelve state-of-the-art
fix pattern taxonomies. By contrast, our tool automatically
compares fix patterns (regardless of their representation) by
comparing the clusters of fixes that can be described by the
same fix pattern. This allows us to find the clusters that match
the baseline clusters, as well as to find non-matching clusters
that are used to expand the taxonomy of fix patterns and enable
APR tools to fix a greater range of bugs in the future.

III. METHODOLOGY

In this section, we explain the workflow of our tool (see
Fig. 1): how we represent code (III-A), generate code chunks
of Java-specific AST tokens (Kinds) (III-B), post-process
Kinds (III-C), generate n-grams (III-D) and calculate similarity
(III-E). In addition, we present the clustering algorithm (III-F)
that uses the calculated similarities to group similar chunks.

A. Code Representation

To represent code we use a linear simplified version
of an AST representation that contains only types (Kinds)
of AST nodes as a sequence. Kinds are Java-specific to-
kens that are implemented as an enum in the package
com.sun.source.tree. To extract the Kind sequences, we
extended the Java 8 PrettyPrinter from com.sun.tools

to parse ASTs from class declarations and class methods.
We annotate standard enumerated Java Kinds with meta

data. Additional information is extracted from an AST node
(e.g. a variable name, a constant value, etc.) to be able
to perform the differencing action between the buggy and
fixed code. To illustrate original and annotated Kinds, we use
the bug Closure-123 from Defects4J. The bug is an incor-
rect assignment and the fix replaces an enumerated constant
Context.OTHER with the method invocation
getContextForNoInOperator(context) (see Listing 2).

285c285
− Context rhsContext = Context.OTHER;
−−−
+ Context rhsContext = getContextForNoInOperator(context );

Listing 2: A human-written fix for Closure-123 deletes the line
marked with ’-’ and adds the line marked with ’+’.

For this example, our tool generates sequences of Kinds for
the buggy and fixed method. The difference in Kinds is in the
middle of the methods: two Kinds from the buggy method are
replaced by three Kinds in the fixed method. The Kinds are
then annotated (see Fig. 2 for the example in Listing 2).

In annotating, a Kind for a variable IDENTIFIER is ex-
tended by the variable name. A Kind for a field access
MEMBER_SELECT is extended by the name of the variable
and the name of the field. METHOD_INVOCATION and fol-
lowing IDENTIFIER are extended by the method name.
Additionally, a Kind for a primitive type PRIMITIVE_TYPE

would be extended by its type. A Kind for a literal (i.e.
a constant value), e.g. INT_LITERAL, FLOAT_LITERAL, and
BOOLEAN_LITERAL, would be extended by its value. Note that
a Kind for a method declaration METHOD remains unchanged
because its signature (the return value, the method name and
the method parameters) are already described in the Kinds
following the method declarations. Annotations of Kinds are
used by a differencing tool to recognise and find differences
between two pieces of code (before and after a fix) e.g., when
a name of a variable was changed.

B. Representation of code chunks

When fixing a bug, developers modify source code by
deleting, inserting or modifying parts of code. The difference
between the original and revised versions of code is called a
fix. In our implementation, a fix consists of one or multiple
chunks. Declarations of class attributes are extracted into new
methods during the parsing process so that chunks can also
contain code modifications in class attribute declarations.

We use a differencing tool from the DiffUtils library [37] to
compute a fine-grained difference between two sequences of
Kinds. The resulting chunk consists of deltas, i.e., lists of con-
secutive modified Kinds. A delta is represented as an original
and revised list of AST Kinds. Original and revised lists are
empty when the modification action is “insert” and “delete”,
respectively. For our example of Closure-123 (Listing 2), the
generated chunk consists of a delta that changes the original
to the revised sequence of Kinds (see Fig. 3).

C. Post-processing of Kinds

Simplifying a chunk of a fix and preparing it for compar-
ison against other chunks is performed in post-processing.
Post-processing changes Kinds in a chunk by 1) removing
the annotation added earlier because it is irrelevant for our
similarity calculations, 2) detecting when the code was moved
from one place to another, but not modified, and 3) making
the modifications more general and using more generic Kinds
to find similarities between chunks.
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Fig. 1: The workflow of generating Kinds, chunks, n-grams and calculating their similarity. Blue Kinds are the Kinds that are
the same in a buggy and fixed program. Red Kinds and n-grams are buggy and green and turquoise are fixed.

Fig. 2: Kinds in the buggy and fixed method of Closure-123.

Fig. 3: The chunk of the fix for Closure-123.

The level of similarity we achieve with this processing is
similar to the Type 2 clone [32]. Type 2 clones have the same
sequence of Kinds and the same semantics, although a variable
name, a type or a method name can differ. With the Type 2
clones, we can find the similarities between chunks across
different methods, classes and projects.

To detect Type 2 clones, post-processing checks if “deleted”
and “inserted” deltas have the same Kinds. This happens when
a fix moves code from one place to another. Since Kinds in this
type of fix are irrelevant, they are replaced with a new generic
Kind MOVE_BLOCK. Similarly, deleting code is detected by
having only a “deleted” delta, of which the content is irrelevant
and replaced with a new generic Kind DELETE_BLOCK.

In addition, the Java 8 parser generates different Kinds
for operators. Post-processing replaces operators and con-
stants with a new generic Kind OPERATOR and LITERAL,
respectively. A pair of MEMBER_SELECT and IDENTIFIER is
simplified by replacing it with IDENTIFIER - a more generic
representation of a variable (see Closure-123 Kinds in Fig. 4).

Fig. 4: The Closure-123 chunk after post-processing.

Fig. 5: The bigrams of the Closure-123 chunk.

D. Generating n-grams

Our final modification of chunks is to break a sequence of
Kinds into n-grams. When N = 1, each n-gram consists of 1
Kind. When N = max (max is the length of the whole chunk),
the sequence is transformed into only one n-gram. When N
is between 1 and max, the neighbour Kinds form n-grams.
N-grams length 1, 2 and 3 are also called unigrams, bigrams
and trigrams, respectively. In this work, n-grams are generated
from original and revised Kinds separately. For our example
of Closure-123, the bigrams are shown in Fig. 5. Note that the
beginning and the ending of the sequence of n-grams contain
n-grams lengths from 1 to N-1 and n-grams lengths from N-1
to 1, respectively. This way, we ensure that each Kind from
a chunk appears N times in the sequence and has an equal
impact on the calculation of similarity.

E. Similarity metric

Calculating the similarity between two chunks is performed
by determining the proportion of n-grams common to both
chunks regardless of the order of their n-grams. When com-
paring n-grams length N = max, two chunks can be similar
if they have similar Kinds and a similar order of Kinds. With
the lower value N, the order of n-grams has less impact on
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the similarity. This allows chunks with the same changes in a
slightly different order to be declared as similar.

We modified Baxter’s similarity formula [27] for calculating
the similarity between two sub-trees for clone detection:

Sim =
2 ∗ S

2 ∗ S + L+D

where S is the number of shared nodes and L and R are the
numbers of different nodes in one (left) sub-tree and the other
(right) sub-tree, respectively. S can have a value between 0
(when there is no matching in sub-trees) to 1 (when sub-trees
are equivalent).

Our similarity formula is:

Sim =
2 ∗ Sorig + 2 ∗ Srev

2 ∗ Sorig + Lorig +Dorig + 2 ∗ Srev + Lrev +Drev

Our code modifications are represented as n-grams, so the
similarity formula compares 1) the original n-grams of the first
chunk (“left”) and the original n-grams of the second chunk
(“right”), and 2) the revised n-grams of the first chunk (“left”)
and the revised n-grams of the second chunk (“right”). Our im-
plementation ignores duplicated n-grams to avoid considering
the same code modification more than once.

As explained earlier (Section III-C), when we compare two
chunks, we do not require that there is an exact match between
them. Similar to Type 2 code clones, we ignore variable names,
method names and primitive types. Additionally, we ignore the
type of operators and constant values. This enables us to find
similar chunks across different methods, classes and projects.

F. Clustering

We use a threshold-based clustering algorithm [28] to
automatically cluster chunks. Similarly to the k-means algo-
rithm [29], [30], K items (i.e. generated chunks) are chosen
from the dataset and each becomes the centre (centroid) of a
cluster. Every other item is then assigned to a cluster with the
smallest distance to the centroid. The distance is calculated as
1 - Sim. If the distance is greater than a pre-defined threshold,
the threshold-based algorithm creates a new cluster with the
item and dynamically changes the number of clusters K. After
assigning all items, for each cluster the item that has the
minimum total distance to other items in the cluster becomes
the centroid. The threshold-based algorithm eliminates one of
the limitations of k-means because the number of clusters K
does not have to be user-defined [38].

IV. EVALUATION

In this section, we evaluate the similarity metric and the
clustering algorithm using the Defects4J dataset [19]. Our tool
automatically generates fix patterns out of the clusters with
similar chunks and compares them with the clusters extracted
from Liu et al. [6].

A. Baseline

Liu et al. presented a collection of fix patterns from the
literature resulting in a taxonomy of 35 patterns used by their

APR tool TBar. The taxonomy is well defined, straightforward
to both use and expand when new fix patterns are discovered.

TBar outperforms other state-of-the-art APR tools (in terms
of the number of fixed Defects4J bugs) by applying the fix
patterns from their taxonomy to the Defects4J bugs (a previous
version with 395 bugs). TBar generates partial, plausible and
correct fixes from the 30 fix patterns. Five fix patterns did not
generate fixes for any Defects4J bug, e.g., due to addressing
different bug types than those found in Defects4J.

For our evaluation, we generated the baseline clusters out
of information extracted from the TBar publication [6]. For
each fix pattern in the TBar taxonomy, we made a cluster of
the fixed Defects4j bugs (see details at https://github.com/scc-
fixie/fix-patterns/blob/main/TBar.md). When multiple fixes
were generated for the same bug, we chose the one most
similar to the human-written fix and discarded the rest. Addi-
tionally, we decided to exclude three fixes (Lang-24, Math-4,
Math-58) because they were not available online and we did
not have access to their code modifications. As a result, the
number of baseline clusters was 23 and the total number of
TBar fixes 47.

To compare calculated and baseline clusters, we used the
adjusted Rand index (ARI) [39], a preferable method for
calculating the agreement between two sets of clusters without
labeling [40]. The value of the ARI can be in the range
from -1 to 1 (close to 0 for random clustering, 1 for total
agreement and -1 for complete disagreement). We use the ARI
implementation provided in the JSAT tool [41].

B. Characteristics of the Defects4J projects

The latest version of Defects4J (2.0.0) contains 835 bugs
and their human-written fixes from 17 open-source projects:
Chart, Cli, Closure, Codec, Collections, Compress, Csv, Gson,
JacksonCore, JacksonDatabind, JacksonXml, Jsoup, JxPath,
Lang, Math, Mockito and Time (“cha” , “cli”, “clo”, “cod”,
“col”, “com”, “csv”, “gso”, “jaC, “jaD”, “jaX”, “jso”, “jxP”,
“lan”, “mat”, “moc”, and “tim”, respectively for shorter). The
bugs are reproducible and covered by at least one failing test
case, which passes when a fix is applied. The fixes contain
only the code modifications applied to fix the bugs and are
not related to code refactoring or implementing new features.
As a result, Defects4J is a well defined dataset suitable for
understanding software bugs and fixes, as well as for the
evaluation of APR tools.

As explained in Section III, our tool transforms buggy and
fixed code into sequences of Kinds and applies the DiffUtils
tool to generate method-level chunks. We show the output
related to chunks in Table I. The table contains the basic
characteristics of Defects4J projects: the number of bugs, the
number of generated chunks, the maximum number of chunks
for a fix and the number of bugs fixed by TBar. Note that
TBar was evaluated only on one of the previous versions of
the Defects4J dataset that included six projects: Chart, Closure,
Lang, Math, Mockito and Time.

Chart is a project with many bugs that require small local
code changes. Many fixes (17 out of 26) modify only one
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TABLE I: Characteristics of the Defects4J projects collected from Defects4J (1), our tool (2 and 3) and TBar (4).

cha clo lan mat moc tim cli cod col com csv gso jaC jaD jaX jso jxP

1. Number of bugs 26 174 64 106 38 26 39 18 4 47 16 18 26 112 6 93 22

2. Number of generated chunks 39 444 98 158 94 54 64 24 6 80 21 33 57 227 6 169 53

3. Max number of chunks for a fix 4 46 9 11 20 10 8 4 3 10 4 11 7 22 2 16 9

4. Number of bugs fixed by TBar 14 (54%) 23 (13%) 14 (22%) 23 (22%) 3 (8%) 4 (15%) - - - - - - - - - - -

method and, for the remaining fixes, the number of modified
methods (and as a consequence, the number of generated
chunks) is never greater than 4. TBar is more effective at
repairing bugs from Chart (54%) than other projects.

Projects with fixes that modify a large number of methods
(i.e., with the highest maximum numbers of chunks) are
Closure and Mockito having fixes that modify 46 and 20
methods, respectively. These projects are also harder to fix
automatically using TBar.

Since APR tools are able to fix only one portion of bugs
in a dataset, clustering numerous human-written fixes gives us
more opportunity to understand bugs and cluster their fixes.
Even further, splitting complex fixes into chunks, which are
simpler code modifications at the method level more likely to
cluster with other chunks, allows us to have larger clusters
that match an existing state-of-the-art fix pattern taxonomy, as
well as to discover new fix patterns.

C. Clustering projects separately
After generating chunks, we apply our clustering algorithm

to each project from Defects4J separately and compare our
clusters with the TBar clusters for the same project by cal-
culating the ARI values (see Fig. 6). Note that Mockito and
Time are not shown due to a small number of fixes (three and
four, respectively).

We vary the length of n-grams (N) from 1 (when each n-
gram is one Kind) to the maximum (when one n-gram was
generated out of all Kinds in a chunk) and calculate ARI for
different similarity threshold values1. The similarity threshold
is a parameter that controls how similar are the chunks that
belong to the same cluster.

Although our aim is to cluster human-written fixes, we
also apply our clustering algorithm on the fixes automatically
generated by TBar (N = 2 (auto) in Fig. 6). With N = 2 (auto),
the agreement is improved due to eliminating the differences
between human-written and automatically generated fixes.
The remaining disagreement is a result of implementation
differences between our clustering algorithm and the baseline.

For Chart, we get almost perfect agreement (ARI = 0.93)
with the baseline for N > 1 and threshold > 0.64 (see
Fig. 6) because the human fixes are very similar to the fixes
automatically generated by TBar and our clustering algorithm
generates almost the same clusters as the baseline.

Closure’s fixes are more complex and harder to cluster, so
the best agreement (ARI = 0.37) is for N > 1 and threshold

1N values between 3 and max are omitted from the charts due to the ARI
values with an insignificant difference to N=3 and N=max.

≥ 0.68 (see Fig. 6). Some human fixes are very different from
the automatically generated fixes, so N = 2 (auto) significantly
increases the agreement - the best agreement (ARI = 0.64)
is for threshold ≥ 0.68 .

For Lang, we have a poor agreement generally: ARI = 0.29
for trigrams and threshold = 0.24 − 0.26 (see Fig. 6). One
reason for the poor agreement is the low number of Lang fixes
that form clusters with each other (7 out of 14 in the baseline
clusters) and matching our clusters with the baseline clusters is
seen more as due to chance than due to the good performance
of our clustering algorithm. The second reason is a different
implementation of human and automatically generated fixes.
The comparison of clusters with only automatically generated
fixes (N = 2 (auto)) shows a good agreement (ARI = 0.55)
for and threshold = 0.68− 0.80.

Clusters in Math achieve very good agreement with the
baseline; there is some performance drop due to the different
implementations of human and automatically generated fixes.
Maximum ARI = 0.71 is achieved for any N value and
threshold ≥ 0.9 and ARI = 0.85 for N = 2 (auto) for
threshold ≥ 0.9 (see Fig. 6).

Although it is easier to analyse clusters and understand
similarities when fixes from different projects are clustered
separately, it is important to cluster fixes from various projects
together to understand how and if bugs and fixes are similar
across projects.

D. Overall project clustering

To measure the overall performance of our tool, we merged
the clusters from all the Defects4J projects and compared them
with the TBar clusters. In Fig. 7, we show the calculated ARI
values with various N values for n-grams and various similarity
threshold values (the parameters explained in Section IV-C).

Similarly to the ARI values for clustering individual projects
separately, the ARI values for clustering all projects to-
gether are increased significantly for threshold = 0.682.
The maximum ARI = 0.55 is reached for N = 2 and
threshold = 0.86. For this threshold value, the calculated
clusters contain the same items as for threshold = 1.0, and
additional ones that are not in baseline clusters. The number of
chunks matching the baseline is 565 for threshold = 0.86 and
538 for threshold = 1.0. This shows that the calculated clus-
ters include more items without deteriorating the performance
when threshold = 0.86 and that the calculated clusters are

2The increment is by 21.02%, 20.98%, 20.95% and 19.86% for N=1, N=2,
N=3 and N=max, respectively, in comparison to threshold=0.66.
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Fig. 6: Adjusted Rand index values of four projects: Chart, Closure, Lang and Math.

Fig. 7: Adjusted Rand index values of the projects together.

over-fitting when threshold = 1.0. With threshold = 0.86,
more chunks match the state-of-the-art taxonomy. As a conse-
quence, more bugs could be fixed by applying the fix patterns
from the taxonomy than when threshold = 1.0.

Baxter et al. [27] effectively used unigrams (N = 1) when
looking at the similarity of methods for identifying code
clones. However, for unigrams, the similarity metric ignores
the order of Kinds and in Fig. 7 we show that N > 1
outperforms unigrams for threshold ≥ 0.4.

In Table II we show clusters that are automatically generated
by our clustering algorithm with bigrams (because it reaches
the maximum ARI = 0.55) and threshold = 0.86 (to
avoid over-fitting) and compared with the TBar clusters. The
items (chunks) are represented as a combination of the shorter
project name and the bug number in the project. The index of
an item shows which chunk (i.e. which part of a fix) belongs
to the cluster. When an item does not have any index, this
means that the item represents a complete fix.

For each cluster, we show a centroid, its fix pattern
(as a simplified chunk with Kinds) and the matching
TBar cluster. The full list of items in the clusters
is available online: https://github.com/scc-fixie/fix-
patterns/blob/main/MatchingFPs.pdf.

When we compare our and baseline clusters, a mismatch
usually comes as a result of different implementations of hu-
man and automatically generated fixes. According to Wang et
al. [42] who analysed the differences between human-written
and machine-generated fixes, 25.4% of analysed machine-
generated fixes are syntactically different from their human
counterpart. In our case, eight human fixes are more complex,
i.e., have a bigger number of modified lines of code (clo-
38, lan-22, tim-7, clo-40, clo-21. clo-22, lan-63, mat-15). For
five fixes, the implementation is not identical, but semantically
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TABLE II: Fix patterns, centroids of the calculated clusters and their matching TBar fix patterns (FP).

Fix pattern Centroid TBar FP

1 Replace an operator
Change: (OPERATOR) to (OPERATOR) mat-85 FP11.1

2 Replace a primitive type
Change: (PRIMITIVE TYPE) to (PRIMITIVE TYPE) mat-57 FP7.1

3 Replace a method invocation
Change: (METHOD INVOCATION, IDENTIFIER) to (METHOD INVOCATION, IDENTIFIER) jaD-311 FP10.1

4 Replace a variable
Change: (IDENTIFIER) to (IDENTIFIER) lan-21 FP13.1

5 Replace 2 variables
Change: (IDENTIFIER, IDENTIFIER) to (IDENTIFIER, IDENTIFIER) cha-20 FP10.2

6 Replace an assignment with a method invocation
Change: (ASSIGNMENT, IDENTIFIER) to (METHOD INVOCATION, IDENTIFIER) mat-351 FP4.1

7 Replace a constant
Change: (LITERAL) to (LITERAL) cod-3 FP9.1

8 Replace an operand and a block with a constant
Change: (OPERATOR) to (OPERATOR), Insert: (INSERT BLOCK)), Delete: (DELETE BLOCK) mat-11 FP8.3

9 Remove a method
Delete: (METHOD, DELETE BLOCK) clo-1631 FP15.2

10 Remove a block
Delete: (DELETE BLOCK) jso-68 FP15.1 FP6.2

11 Move code
Delete: (MOVE BLOCK), Insert: (MOVE BLOCK) tim-7 FP14

12 Insert a parameter
Insert: (IDENTIFIER) lan-26 FP6.3

13 Insert a return statement
Insert: (RETURN, LITERAL) lan-51 FP4.2

14 Insert parentheses to change the order of operations
Delete: (BLOCK), Insert: (PARENTHESIZED, OPERATOR) mat-80 FP11.2

15 Insert a method invocation
Insert: (METHOD INVOCATION, IDENTIFIER) mat-34 FP13.2

16 Insert a condition
Insert: (OPERATOR, PARENTHESIZED)), Insert: (PARENTHESIZED, OPERATOR, IDENTIFIER, IDENTIFIER) cha-9 FP6.3

17 Insert an if statement
Insert: IF, PARENTHESIZED, OPERATOR, IDENTIFIER, LITERAL, BLOCK tim-31 FP4.4

18
Insert an if block
Insert: (IF, PARENTHESIZED, OPERATOR, IDENTIFIER, NULL LITERAL, BLOCK,
EXPRESSION STATEMENT, ASSIGNMENT, IDENTIFIER, LITERAL)

lan-471 FP2.3

19 Insert a null pointer checker
Insert: (IF, PARENTHESIZED, OPERATOR, IDENTIFIER, NULL LITERAL, BLOCK) jaD-801 FP2.1

20 Insert a null pointer checker with return
Insert: (IF, PARENTHESIZED, OPERATOR, IDENTIFIER, NULL LITERAL, BLOCK, RETURN, LITERAL) cha-141 FP2.2

21
Insert a null pointer checker with throwing an exception
Insert: (IF, PARENTHESIZED, OPERATOR, IDENTIFIER, NULL LITERAL, BLOCK, THROW,
NEW CLASS, IDENTIFIER, LITERAL)

cha-191 FP2.5

22

Insert if-else with throwing an exception
Insert: (IF, PARENTHESIZED, INSTANCE OF, IDENTIFIER, PARAMETERIZED TYPE, IDENTIFIER,
UNBOUNDED WILDCARD, BLOCK),
Insert: (BLOCK, THROW, NEW CLASS, IDENTIFIER, LITERAL)

mat-89 FP1
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equivalent (clo-2, lan-33, lan-39, moc-29, moc-38). clo-63 is
deprecated in the version of Defects4J that we are using so
it is missing in our clusters. The more complex, different or
missing (due to deprecation) fixes cause mismatches in clusters
and reduce the agreement between our clustering algorithm
and the baseline.

Each of our 21 calculated clusters matches a cluster from
the baseline. Only the 10th cluster matches two clusters due to
differences between our clustering algorithm and the baseline.
The reason is that our approach is more general and it ensures
that chunks with any code removal belong to one cluster
(except a removal of a method, which is the 9th cluster).

Similarly to the results from clustering projects separately
(see Section IV-C), when we apply our clustering algorithm
on the TBar fixes (N = 2 (auto)), the agreement is improved
due to eliminating the differences between human-written and
automatically generated fixes. In this case, the best agreement
(ARI = 0.76) is for threshold = 0.68− 0.72.

Since the items in clusters are chunks, sometimes chunks
of the same fix form a cluster together, e.g., two chunks of
jaC-14 belong to the 1st cluster because its fix consists of a
replacement of an operator in two methods. It also happens
that chunks of the same fix belong to different clusters, e.g.,
cha-15 has one chunk in 19th cluster and another in 20th cluster.
This means that some multiple-location bugs could be fixed
by applying the same fix pattern multiple times or by applying
different fix patterns simultaneously.

In Fig. 7, N > 1 outperforms unigrams for threshold ≥
0.4. Since unigrams are equivalent to Kinds, the results show
that N > 1 is preferable for achieving a good agreement
with the baseline. However, we still see the potential use of
unigrams for clustering. E.g. cha-20 belongs to the 4th cluster
when using unigrams since its fix replaces two variables in
the same statement and it is seen as the same modification
applied twice, so one is removed. When using bigrams, both
modifications are included in the chunk, so cha-20 has no
similarities with other chunks and it forms a cluster on its
own. This example shows that if we combine the clusters
from unigrams and bigrams, we could have a hierarchy of
clusters - from more general (with unigrams) to more specific
(with bigrams). The detailed clusters generated by using
unigrams is available online: https://github.com/scc-fixie/fix-
patterns/blob/main/UnigramFPs.pdf.

E. New fix patterns

Apart from the clusters presented in the previous section,
our clustering algorithm also generates clusters that do not
match the baseline taxonomy of fix patterns presented by
Liu et al. [6]. To analyse, understand and organise the non-
matching clusters and their items, and to expand the existing
taxonomy with new clusters of chunks, we conducted a
thematic analysis [43].

We selected three raters (from the authors of this paper)
to perform the thematic analysis of the chunks from non-
matching clusters. Firstly, the raters became familiar with

Liu’s taxonomy. Secondly, they received a random list of 25
chunks (five items from five clusters that did not match the
baseline clusters). Thirdly, when possible, the raters matched
the chunks with fix patterns from the baseline. Otherwise,
they suggested new fix patterns. Initially, the raters agreed on
15 chunks. Cohen’s Kappa value was 0.41, which showed a
moderate agreement. After discussion (seen as an essential part
of inter-rater agreement [44]), the raters agreed on the choice
of fix patterns and the decisions needed to identify a pattern.
The raters identified three new fix patterns. This round served
as a pilot to ensure that the raters understood the baseline
taxonomy and the steps of the thematic analysis.

In the second round, the raters received the remaining 151
chunks from the non-matching clusters with three or more
chunks. Similar to the first round, the raters matched the
chunks with the fix patterns from the baseline when possible or
suggested new fix patterns. After discarding complex chunks
(i.e., chunks that would be generated by applying more than
one fix pattern) and excluding new fix patterns that were
initially hard for raters to describe without discussion, Cohen’s
Kappa value was 0.63, which indicated substantial agreement.
After a discussion that achieved agreement, the raters observed
in total eleven new fix patterns as an extension of the baseline
taxonomy. In Table III we show the fix patterns and the
centroids of the new clusters as well as how they expand the
TBar taxonomy. The full content of the clusters of the new
fix patterns is available online: https://github.com/scc-fixie/fix-
patterns/blob/main/NewFPs.pdf.

The 1st proposed fix pattern is a null pointer checker with
returning a null value. Although our clustering algorithm
makes a difference if a return statement is within parenthesis
(jaD-13 and mat-4) or not (jso-22), the raters agreed that this
is irrelevant and that this is the same fix pattern.

The raters observed the 2nd and the 3rd fix patterns from the
cluster with the centroid com-29: an insertion of an assignment
and an insertion of a field initialisation.

The 4th and the 5th proposed fix patterns are an insertion of
a declaration with and without the initialisation, respectively.
Note that our clustering algorithm generated two clusters with
the same fix pattern “Insert Declaration with Initialisation” and
they both match the 4th cluster. This is the only example we are
aware of where the similarity of two centroids is greater than
the similarity threshold and where two clusters should have
been merged into one. Currently we are not able to explain
this behaviour.

The 6th proposed fix pattern is an insertion of a case in
a switch statement, and the 7th is an insertion of a variable
initialisation. The 8th and 9th proposed fix patterns are a
mutation of a literal and a method, respectively.

Finally, the 10th and 11th proposed fix patterns are different
mutations of a variable: a variable is replaced with a new
instance of a class, and a variable is replaced with a method
invocation having the same variable as an argument.

These eleven fix patterns expand the baseline taxonomy and
can enable APR tools to fix a greater range of bugs.
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TABLE III: Fix patterns, centroids of the new clusters and proposed extension of the TBar fix pattern (FP) taxonomy.

Fix pattern Centroid Expanded TBar FP

1
Insert a null pointer checker with return null
Insert: (IF, PARENTHESIZED, OPERATOR, IDENTIFIER,
NULL LITERAL, RETURN, NULL LITERAL)

jso-221
Insert Null Pointer Checker (FP2.6):
+ if (exp == null) return null;

2 3
Insert variable initialisation
Insert: (IDENTIFIER, IDENTIFIER,
EXPRESSION STATEMENT, ASSIGNMENT)

com-291
Insert Assignment (FP4.5):
+ var1 = var2

Insert Field Initialisation (FP4.6):
+ obj.field = var

4
Insert Declaration with Initialisation
Insert: (PRIMITIVE TYPE, LITERAL, VARIABLE) com-3 Insert Declaration with Initialisation (FP4.7):

+ T var = literal

Insert Declaration with Initialisation
Insert: (PRIMITIVE TYPE, LITERAL, VARIABLE) lan-23

5 Insert Declaration
Insert: (IDENTIFIER, VARIABLE) com-297

Insert Declaration without Initialisation (FP4.8):
+ T var

6 Insert Case
Insert: (CASE, IDENTIFIER) clo-103 Insert Case (FP4.9):

+ case exp

7 Insert an assignment
Insert: (VARIABLE, PRIMITIVE TYPE, LITERAL) clo-302

Insert Initialisation (FP4.10):
- var
+ var = literal

8 Replace null with a variable
Change: (NULL LITERAL) to (IDENTIFIER) jaD-952

Mutate Literal (FP9.3):
- literal
+ var

9
Replace a method invocation with a variable
Change: (METHOD INVOCATION, IDENTIFIER)
to (IDENTIFIER)

jaC-123

Mutate Method (FP10.6):
- method
+ var

10
Replace a variable with a new instance
Change: (IDENTIFIER) to
(NEW CLASS, IDENTIFIER, IDENTIFIER)

moc-61

Mutate Variable (FP13.3):
- var
+ new instance

11 Insert a method invocation
Insert: (METHOD INVOCATION, IDENTIFIER) jso-29

Mutate Variable (FP13.4):
- var
+ method(var, ...)

V. THREATS TO VALIDITY

Threats to external validity are related to our choice of
the fix pattern taxonomy and the dataset. We chose Liu’s fix
pattern taxonomy [6] as our baseline because it is a selection of
the various taxonomies found in the literature. The taxonomy
is well presented and easy to adopt. In our evaluation, we
use Defects4J which contains 835 bugs and fixes that are
reproducible and covered by at least one test case. The fixes
are isolated from any other code modifications, e.g., refac-
toring or implementing new features. These characteristics
make Defects4J suitable for understanding bugs and fixes, and
Defects4J has become an established dataset against which the
performance of APR techniques can be benchmarked.

Threats to internal validity are related to the correctness of
our thematic analysis. The novel fix patterns were reviewed
and merged into the baseline taxonomy by three raters, all of
whom had experience in developing software as well as in
conducting research in automated predicting and repairing of
software bugs. Every conflict among the raters was resolved
by discussion, leading to agreement on either an existing fix
pattern or a new fix pattern that expands the existing taxonomy.

VI. CONCLUSIONS AND FUTURE WORK

We presented our approach to automatically generate fix pat-
terns and compare them against the state-of-the-art taxonomy
of fix patterns. Our tool splits fixes into smaller chunks (more
likely to be clustered with other chunks) and calculates their
similarity. The threshold-based clustering algorithm groups
similar chunks together. Each cluster representing a fix pattern
was compared against the taxonomy of fix patterns regardless
of their representation. We evaluated our tool with human-
written fixes from Defects4J. The tool generated 22 clusters
that matched the baseline taxonomy with good agreement and
11 clusters that were thematically analysed and observed as
new fix patterns that expand the baseline taxonomy.

We plan to expand the taxonomy further by generating fix
patterns from other datasets and adding fix patterns from other
taxonomies. Future application of the new fix patterns could
improve the limited performance of current APR tools by
guiding them to fix a larger set of bugs.
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